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Abstract

This paper provides a novel mechanism for identifying and estimating latent group structures in panel
data using penalized techniques. We consider both linear and nonlinear models where the regression
coefficients are heterogeneous across groups but homogeneous within a group and the group membership
is unknown. Two approaches are considered — penalized profile likelihood (PPL) estimation for the
general nonlinear models without endogenous regressors, and penalized GMM (PGMM) estimation for
linear models with endogeneity. In both cases we develop a new variant of Lasso called classifier-Lasso
(C-Lasso) that serves to shrink individual coefficients to the unknown group-specific coefficients. C-
Lasso achieves simultaneous classification and consistent estimation in a single step and the classification
exhibits the desirable property of uniform consistency. For PPL estimation C-Lasso also achieves the
oracle property so that group-specific parameter estimators are asymptotically equivalent to infeasible
estimators that use individual group identity information. For PGMM estimation the oracle property of
C-Lasso is preserved in some special cases. Simulations demonstrate good finite-sample performance of
the approach both in classification and estimation. Empirical applications to both linear and nonlinear

models are presented.
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1 Introduction

Panel data are widely used in empirical analysis in many disciplines across the social and medical sciences.
Such data usually cover individual units sampled from different backgrounds and with different individual
characteristics so that an abiding feature of the data is its heterogeneity, much of which is simply unobserved.
Neglecting latent heterogeneity in the data can lead to many difficulties, including inconsistent estimation
and misleading inference, as is well explained in the literature (e.g., Hsiao 2014, ch. 6). It is therefore widely
acknowledged that an important feature of good empirical modeling is to control for heterogeneity in the
data as well as for potential heterogeneity in the response mechanisms that figure within the model. Since
heterogeneity is a latent feature of the data and its extent is unknown a priori, respecting the potential
influence of heterogeneity on model specification is a serious challenge in empirical research. Even in the
simplest linear panel data models the challenge is manifest and clearly stated: do we allow for heterogeneous
slope coefficients in regression as well as heterogeneous error variances?

While it may be clearly stated, this challenge to the empirical researcher is by no means easily addressed.
While allowing for cross-sectional slope heterogeneity in regression may help to avert misspecification bias,
it also sacrifices the power of cross section averaging in the estimation of response patterns that may be
common across individuals, or more subtly, certain groups of individuals in the panel. In the absence of
prior information on such grouping and with data where every new individual to the panel may bring new
idiosyncratic elements to be explained, the challenge is demanding and almost universally relevant.

Traditional panel data models frequently deal with this challenge by avoidance. Complete slope ho-
mogeneity is assumed for certain specified common parameters in the panel. Under this assumption, the
regression parameters are the same across individuals and unobserved heterogeneity is modeled through
individual-specific effects which typically enter the model additively. This approach is an exemplar of a
convenient assumption that facilitates estimation and inference. Nevertheless, this assumption has been
frequently questioned and rejected in empirical studies; see Hsiao and Tahmiscioglu (1997), Lee, Pesaran,
and Smith (1997), Durlauf, Kourtellos, and Minkin (2001), Phillips and Sul (2007a), Browning and Carro
(2007, 2010, 2014), and Su and Chen (2013), among others.

Despite general agreement that slope heterogeneity is endemic in empirical work with panels, few methods
are available to allow for heterogeneity in the slopes when the extent of the heterogeneity is unknown. Some
researchers assume complete slope heterogeneity where regression coefficients are completely different for
different individuals; see the survey by Baltagi, Bresson, and Pirotte (2008) and Hsiao and Pesaran (2008).
Others consider panel structure models where individuals belong to a number of homogeneous groups within
a broadly heterogeneous population, and the regression parameters are the same within each group but differ
across groups. Two essential questions remain: how to determine the unknown number of groups (dubbed
convergence clubs in the economic growth literature); and how to identify the membership of each individual.
These are longstanding questions of statistical classification in panel data. No completely satisfactory solution
has yet been found, although various approaches have been adopted in empirical research. For instance,
Bester and Hansen (2016) consider a panel structure model where individuals are grouped according to
some external classification, geographic location, or observable explanatory variables; Ando and Bai (2014)
consider a multifactor asset-pricing model with group-specific pervasive factors where the group membership
is known. Here the group structure is assumed to be completely known to the researcher, an approach

that is common in practical work because of its convenience. In spite of its convenience, this approach to



panel inference is inevitably misleading when the number of groups and individual identities are incorrectly
classified.

Several approaches have been proposed to determine an unknown group structure in modeling unobserved
slope heterogeneity in panels. The first approach applies finite mixture models. For example, Sun (2005)
considers a parametric finite mixture linear panel data model, and Kasahara and Shimotsu (2009) and
Browning and Carro (2011) study identification in discrete choice panel data models for a fixed number of
groups using nonparametric discrete mixture distributions. The second approach is based on the K-means
algorithm in statistical cluster analysis. Lin and Ng (2012) and Sarafidis and Weber (2015) consider linear
panel data models where the slope coefficients have latent group structure. They modify the K-means
algorithm to estimate the models but do not provide any inference theory. Bonhomme and Manresa (2015,
BM hereafter) consider a linear panel data model where the additive fixed effects have group structure and
apply the K-means algorithm to estimate the model and study its asymptotic properties. Ando and Bai
(2015) extend BM’s approach to allow for group structure among the interactive fixed effects. In addition,
Phillips and Sul (2007a) develop an algorithm for determining group clusters that relies on the estimation
of evaporating trend functions to determine convergence clusters. Hahn and Moon (2010) argue that the
group structure has sound foundations in game theory or macroeconomic models where multiplicity of Nash
equilibria is expected and they consider nonlinear panel data models where the parameter of interest is
common to individuals whereas the fixed effects have finite support.

The present paper proposes a new method for econometric estimation and inference in panel models
when the regression parameters are heterogenous across groups, individual group membership is unknown,
and classification is to be determined empirically. It is an automated data-determined procedure and does
not require the specification of any modeling mechanism for the unknown group structure. The methods
proposed here have several novel aspects in relation to earlier research and they contribute to both the Lasso
and econometric classification literatures in various ways, which we outline in the following paragraphs.

First, our approach is motivated by a key advantage of Lasso technology in coping with parameter
sparsity. This advantage is particularly useful when the set of unknown parameters is potentially large
but may also embody certain sparse features. In a typical panel structure model, the effective number of
unknown regression parameters { ;, =1 } is not of order () as it would be if these parameters
were all incidental, but rather of some order ( () where ( denotes the number of unknown groups
within which the parameters are homogeneous. Hence, in many empirical applications the set of unknown
parameters in a panel structure model surely exhibits the desirable sparsity feature, making the use of Lasso
technology highly appealing.

Second, the procedures developed in the present paper contribute to the fused Lasso literature in which
sparsity arises because some parameters take the same value. The fused Lasso was proposed by Tibshirani,

Saunders, Rosset, Zhu, and Knight (2005) and was designed for problems with features that can be ordered



likelihood objective function and when multiple penalty terms are used they enter the objective function
additively. To achieve simultaneous group classification and estimation in a single step our variant of Lasso
involves  additive penalty terms, each of which takes a multiplicative form as a product of ( penalty terms.
To the best of our knowledge, this paper is the first to propose a mixed additive-multiplicative penalty form
that can serve as an engine for simultaneous classification and estimation. The method works by using each
of the ( penalty terms in the multiplicative expression to shrink the individual-level regression parameter
vectors to a particular unknown group-level parameter vector, thereby producing a joint shrinkage process to
unknown quantities. This process is distinct from the prototypical Lasso method that shrinks an individual
parameter to the known value zero and the group Lasso method that shrinks a parameter vector to a known
vector of zeros (see Yuan and Lin, 2006). To emphasize its role as a classifier and for future reference, we
describe our new Lasso method as the classifier-Lasso or C-Lasso.

Fourth, we develop a double asymptotic limit theory for the C-Lasso that demonstrates its capacity
to achieve simultaneous classification and estimation in a single step. As mentioned in the Abstract, the
paper develops two classes of estimators for panel structure models — penalized profile likelihood (PPL)
and penalized GMM (PGMM). The former is applicable to both linear and nonlinear panel models without
endogeneity and with or without dynamic structures, while the latter is applicable to linear panel models
with endogeneity or dynamic structures. Both broaden the scope of applicability of our method as early
literature only considers linear panels without endogeneity. In either case, we show uniform classification
consistency in the sense that all individuals belonging to a certain group can be classified into the same group
correctly uniformly over both individuals and group identities with probability approaching one (w.p.a.1).
Conversely, all individuals that are classified into a certain group belong to the same group uniformly
over both individuals and group identities w.p.a.1. Such a uniform result allows us to establish an oracle
property of the PPL estimator that, like the BM K-means estimator, is asymptotically equivalent to the
corresponding infeasible estimator of the group-specific parameter that is obtained by knowing all individual
group identities. Unfortunately, our PGMM estimator generally does not have the oracle property. But the
uniform classification consistency property allows us to develop a limit theory for post-C-Lasso estimators
that are obtained by pooling all individuals in an estimated group to estimate the group-specific parameters
and these estimators are asymptotically as efficient as the oracle ones in both the PPL and PGMM contexts.

Fifth, C-Lasso enables empirical researchers to study panel structures without a priori knowledge of the
number of groups, without the need to specify any ancillary regression models to model individual group
identities, and with no need to make any distributional assumptions. When the number ( of groups is
unknown, a BIC-type information criterion is proposed to determine the number of groups for both PPL and
PGMM estimation and it is shown that this procedure selects the correct number of groups consistently.

The rest of the paper is organized as follows. We study C-Lasso PPL estimation and inference of panel
structure models in Section 2. PGMM estimation and inference is addressed in Section 3. Section 4 reports
Monte Carlo simulation findings. Section 5 contains two empirical applications. Section 6 concludes. Proofs
of the main results in the paper are given in Appendices A and B. Additional materials may be found in the
Supplemental Material.

For any real matrix = we write the transpose ’ the Frobenius norm || || and the Moore-Penrose
inverse as T When is symmetric, we use ,..( ) and ;. ( ) to denote the largest and smallest
eigenvalues, respectively. , and Opx1 denote the x identity matrix and x 1 vector of zeros, and 1{-} is

the indicator function. The operator L denotes convergence in probability, A convergence in distribution,



and plim probability limit. We use ( ) — oo to signify that and  pass jointly to infinity.

2 Penalized Profile Likelihood Estimation

This section considers panel structure models without endogeneity. It is convenient to assume first that the

number of groups is known and later consider the determination of the number of unknown groups.

2.1 Panel Structure Models

Given a panel data set {( ;+ )} for =1 and =1 it is proposed to use fixed effects quasi

maximum likelihood to estimate the unknown parameters by solving the minimization problem

] XX
min — (it5 & 4) (2.1)

{Bini} i=1 t=1
Here — ( 4; ,; ;) denotes the logarithm of the pseudo-true conditional density function of ;; given ;; the

history of ( ;+ ), and ( ;, ;), where , are scalar individual effects and , are x 1 vectors of parameters

%

of interest. Traditionally, econometric work has assumed that the are common for all cross sectional

i
units, leading to a homogeneous panel with individual heterogeneity modeled through , alone. At the other
extreme, the , are assumed to differ across individuals and each is estimated at a slow rate without pooling

across section. The present paper allows the true values of ; denoted ? to follow a group pattern of the

general form

0= 917 ¢ 9 (2.2)

Here ?75 O for any # ,Uiiolgz{lQ }oand 9N ?z@forany # Let =# 9
denote the cardinality of the set { In the economic growth literature (e.g., Phillips and Sul, 2007a), o
corresponds to the number of convergence clubs and countries (indexed by ) within the same ' club share

the same (slope) parameter vector { In the market entry-exit example (e.g., Hahn and Moon, 2010), o

denotes the number of pure Nash equilibria and markets (indexed by ) selecting the same equilibrium over
time exhibit the same parameter vector.

For now, we assume that the number of groups, ¢, is known and fixed but that each individual’s group
membership is unknown. In addition, following Sun (2005), Lin and Ng (2012), and BM, we implicitly assume

that individual group membership does not vary over time. Let o =( 1 K,) and B =( , N) We

0 0 0

denote the true values of ; , ; @ andBas ¢ 9 ? a° and B° respectively. The econometric task

is to infer each individual’s group identity and to estimate the group-specific parameters 2 Some examples

of models that fall within this framework and the scope of our methodology are as follows.

EXAMPLE 1 (Linear panel) The linear panel structure model is generated according to

0/

W= ¢ at+ V+ (2.3)

where ; isa x 1 vector of exogenous or predetermined variables, ; is an individual fixed effect, ; is a
x 1 vector of slope parameters, and ;; is the idiosyncratic error term with mean zero. Gaussian quasi-

maximum likeliho%d estimation (QMLE) of ; and , is achieved by minimizing (2.1) with ( ;; ;, ;) =
i 2
% iw— o= ¢ and = ( ;t)/



EXAMPLE 2 (Linear panel with quantile restrictions) Consider the model in (2.3) with the quantile
restriction: | it < 0| 4 ? 9" = see, e.g., Kato, Galvo, and Montes-Rojas (2012). We can estimate
[ ,

and ; by minimizing (2.1) with (4 , ;)= , @#— ;it— ;, where . ()={ — (= )} isa

%

smoothed version of the usual check function with  being a CDF-type kernel function and a bandwidth

parameter.

Eé(AMPLE 3 (Binary_choice panel) The dynamic binary choice panel data model is characterized by ; =
1 i it + ? — #4+>0_ where ;; , and j are as defined i ¢1n Example 1. In this case, — ( ; ; ;) =
it ln it — 2 it — + (]. — it) 11’1 1-— ! it — 2 it — Where it — ( it ;t)/ and () denotes

the conditional CDF (standard logistic or normal) of ;; given ; and the history of ( ;)

EXAMPLE 4 (Tobit panel) The Tobit panel is characterized by ;; = max IO ?/ at 9+ it¢ where
it , and 4 are defined as in the above examples. For clarity, assume that ;s are independent %nd
identically distributed (IID) IO 2 given ; and the history of ( ;i) In th&s case, — : i i 2=
1{ #=0}In . w— b= o 24w 0yl a— = % Jwhere w=(u })
and  denotes the standard normal PDF and CDF, respectively. The presence of the common parameter

2 can be addressed by extending the asymptotic analysis below.

2.2 Penalized Profile Likelihood Estimation of o and 3
Following Hahn and Newey (2004) and Hahn and Kuersteiner (2011), the profile log-likelihood function is

1 XX R
Lt (B) = — (a5 0 () (2.4)
i=1 t=1
~ . 1 IDT . s
where ", ( ;) =argmin,, = ,_; ( &; ; ;) Motivated by the literature on group Lasso (e.g., Yuan and

Lin 2006), we propose to estimate 3 and a by minimizing the following PPL criterion function

X
K
i, (Ba)= inr(B)+— T, —

| (2.5)

i=1
where | = 1ny7 is a tuning parameter. Minimizing the above criterion function produces classifier-Lasso
(C-Lasso) estimates ,B and & of B and a respectively. Let AZ- and " denote the ' and ' columns of B

and @, respectively, i.e., @ =(" " k) and B E(Al AN)

The penalty term in (2.5) takes a novel mixed additive-multiplicative form that does not appear in the
literature. Traditional Lasso includes additive penalty terms to an objective function by differentiating
zeros from non-zero-valued parameters to select relevant regressors. In contrast, the C-Lasso has  additive
terms, each of which takes a multiplicative form as the product of ( separate penalties. The multiplicative

0

component is needed because for each ; can take any one of the ¢ unknown values, ¢ [}{0 We do

not know a priort to which point should shrink, and all ( possibilities must be allowed. Each of the

i
o penalty terms in the multiplicative expression permits , to shrink to a particular unknown group-level
parameter vector ; The summation coglpocjllent i%)ne%ded because we need to pull information from all

? and 9 jointly. Our approach differs from the prototypical

cross sectional units in order to identify
Lasso method of Tibshirani (1996) that shrinks a parameter to zero as well as the group Lasso method of

Yuan and Lin (2006) that shrinks a parameter vector to a zero vector. The main purpose in the latter papers



is to select relevant variables while C-Lasso is designed to determine group membership for each individual.
As emphasized in the Introduction, both problems enjoy the same motivation of parameter sparsity despite
their different nature. C-Lasso has the additional motivation of classification of unknown parameters into a
priori unknown groups each with their own unknown parameters.
Note that the objective function in (2.5) is not convex in 3 even though it is (conditionally) convex in
r when one fixes ; for #  The supplement provides an iterative algorithm to obtain the estimates &
and 3

2.3 Assumptions

i ¢
E[ ( #; ; ;)] Notethat {= IS S

K3 7 K2
(it 5 4) ; Let [ and [“" denote
; Define [ =ttt f * and iﬁi similarly. For
Mg Mgty Mg

simi . My
and similarly for ;* [ it 4 oand [ Define

Let ,( ;) =argmin,, ¥;( ; ;) where¥;( ; )=+

(s g 0) = (it 5 ) qand (a5 g )
the first and second derivatives of , with respect to

. . .. 1
notational simplicity, denote ;; = ; ? 9

1 X o0 13X i i 13X 0
v = — B W w=— E vz = B 5 wve=— BT
t=1 t=1 t=1 t=1

iU ) ) iU Y ) ) iU )

Up = a——— 4 Uy= -2 0 andUly= fi -5 M
A% iV A%
Pr Py P ; P

Let Qr = & [, 1 BUU,) Hr =4 [ EUJ] and Hivy = 5 eqo Hir Define the two

expected Hessian matrices for cross sectional unit :

1 X

15({, o 1)T(

i () = E iﬂi( s ¢ () and () = E 5,(Z)+ ﬁl(z)#b

t=1 t=1 7

where ft’( i) = ZB’( i+ () andsimilarly for %" ( ;) Let min; denote minj<;<x and similarly

for max; We make the following assumptions

ASSUMPTION Al. (i) For each { 4: =12 1} is stationary strong mixzing with mizing coefficients
i (). () =max; ;(-) satisfies () < o 7 forsome o Oand € (01). { 4: =12 } are
independent across
(if) Foreach 0 mingfinfg 05, 00— (80,0)
(iii) Let © denote the parameter space for ;= (
that 0= (Y 9 _lies in the interior of © for each
. 1 v — v )
(iv) Let | | = ?:1 ; and (s )= P (s ) () (pen) where = (1 -+ p41) is
a vector of nonnegative integers and (;, denotes the th element Oé° . There exists a fynction  (-) such
o 1 —Yo —o -
that supgee || * () < (i) (s )— " it} < (a) —  forany €0
and | | <3 and max; B ( )|? M for some ;oo and > 6

i ¢
L T I

2 3

>n \Iji (
L) ©is a compact and convex subset of RPTL such

o

. - . i i ¢¢
(v) There exists a constant g 0 such that min; infgep 44 ( ) > & and min; 4 iss ¢ > &®
(vi) There exists a constant o 0 such that mini<p<i<x, ° 2 — ?o > 4
(vil) ¢ is fizxed and  — € (0 1) for each =1 0as — 00

ASSUMPTION A2. (i 2 (In )% — oo and 1(In )” — 0 for some 0 as ( ) — 00
i) Y2 “Yn ) —=0and ? 792 €]0 ) as ( ) — o0.



P
ASSUMPTION A3. (i) For each =1 o Q% =limn, 1)—oo Nik ieGo Q1 exists and Q, 0
1

(ii) For each = 0, Hx = lim(n, 7y—oc HinT exists and Hy, 0

Assumption A1(i) imposes conditionson { ;;} which are commonly assumed for dynamic nonlinear panel
data model; see, e.g., Hahn and Kuersteiner (2011) and Lee and Phillips (2015). With more complicated
notation, we can relax the stationarity assumption along the time dimension. A1(ii) imposes an identification
condition for the joint identification of ( ; ;) foreach A1(iii) restricts the parameter space and it is possible
to allow © to be -dependent. Al(iv) specifies the smoothness and moment conditions on  or objects asso-
ciated with it. A1(v), in conjunction with A1(ii) and (iv), implies that min;[inf,, .\, .. 8.)>n Wi ( ; ;) —
|>n v, ( 0= to To ] 0 Al(vi) specifies that the

A A A i
group-specific parameters are separated from each other, similar to the separation requirement in Hahn and

Moon (2010). Al(vii) implies that each group has an asymptotically non-negligible membership number
of individuals as — oo This assumption can also be relaxed at the cost of more lengthy arguments.

Assumption A2(i) imposes conditions on 1 all of which hold if
1 ““forany €(012) (2.6)

A2(ii) is needed to ensure some higher order terms are asymptotically negligible. A3 is used to derive the
asymptotic bias and variance of the C-Lasso estimator. The theory developed below under these conditions
does not require correct specification of the likelihood function and the C-Lasso asymptotics apply under
the general QMLE setup.

2.4 Asymptotic Properties of the PPL C-Lasso Estimators
2.4.1 Preliminary Rates of Convergence for Coefficient Estimates

The following theorem establishes the consistency of the PPL estimates { ;} and {1}

R i ¢
Theorem 2.1 Suppose thqt Assumgtion Al holds and = (1). Then (i) ,— "= p gt + 1 for
- ¢ -

1 PNy oS- o2 i ¢ TR I . i
=12 (i) % = i— 2= p ' and (i) g oy (9 k)= p TV
where ("~ (1 " (Ko)) 15 a suitable permutation of ("1 " Ko)
REMARK 1. Theorem 2.1(i)-(ii) establish the pointwise and mean-square convergence of ;. Theorem
2.1(iii) indicates that the group-specific parameters ¢ 0. can be estimated consistently by " " Ko

subject to permutation. As expected and consonant with other Lasso limit theory, the pointwise convergence
rate of ; depends on the rate at which the tuning parameter ; converges to zero. Somewhat unexpectedly,
this requirement is not the case either for mean-square convergence of Ai or convergence of " . For notational

simplicity, hereafter we simply write " for " ;) as the consistent estimator of 9, and define

R n . (0]
r= €{l2 b, =" for =1 0 (2.7)

2.4.2 Classification Consistency

Roughly speaking, a classification method is consistent if it classifies each individual to the correct group

w.p.a.l. For a rigorous statement of this property we define

) n ) o R n o
ENT,i = S k| S 2 and ENT,i = S 2| c K (28)



where =1 and =1 o Let gyt = Uiey “enr and gy = Uiee, N kNt and N
mimic Type I and II errors in statistical tests: jn7 denotes the error event of not classifying an element of

2 into the estimated group . k; and “wnT denotes the error event of classifying an element that does not
belong to  { into the estimated group "+ Both types of errors must be controlled. We use the following

definition.

Definition 1. (Consistent classification) The classification is individually consistent if ( AkNT)i) — 0 as
( )—ooV € %and €l o} and ( pn7i) — 0 as ( ) ooV € pand e{l o}
It is uniformly consistent if (UkK:‘Jl “pnT) — 0 and (UkK:‘)1 ent) — 0 as ( ) — 00

The following theorem establishes uniform consistency for the PPL classifier.

R P .
Theorem 2.2 Suppose that Assumptions A1-A2 hold. Then (i) (Ui{:‘J1 kNT) < 5:01 ( knT) — 0 as

( )—oo and (@) (U wvr) < o2 (Cevr) —0as () — o0

REMARK 2. Theorem 2.2 implies that all individuals within a group, say 2 can be simultaneously

correctly classified into the same group (denoted Ak) w.p.a.l. Conversely, all individuals that are classi-

fied into the same group, say " simultaneously correctly belong to the same group ( 2) w.p.a.l. Let
|Aﬂ) = {12 }\(Ui{i1 Ak) and N1 = { € Ao} Theorem 2.2(i) implies that (Ui<;<n AiNT) <
Ko

o1 ( “pnT) — 0 That is, all individuals can be classified into one of the ( groups w.p.a.l. Never-
theless, when is not large, a small percentage of individuals could be left unclassified if we stick with the
classification rule in (2.7). To ensure that all individuals are classified into one of the ( groups in finite

samples, we can modify the classifier. In particular, we classify €  if "= ") for some =1 0

i
~ . ~ ~ . ~ ~ ~ N K ~ ~

and € ;forsome =1 oif || ;= il = min{|| ; — 4| | i — "roll}and % 1{ ;= "%} =0

Since the event 2(201 1{ , = "k} = 0 occurs w.p.a.l uniformly in  we can ignore it in large samples in

subsequent theoretical analysis and restrict our attention to the classification rule in (2.7) to avoid confusion.

Let ;= lNzl 1{ € i x} The following corollary studies the consistency of k.
Corollary 2.3 Suppose that Assumptions A1-A2 hold. Then " — r= p(1) for =1 0
2.4.3 The Oracle Property and Asymptotic Properties of Post-Lasso Estimators
The following theorem reports the oracle property of the Lasso estimator { " }.

i ¢ i ¢
Theorem 2.4 Suppose Assumptions A1-A3 holdehen v/ o IAk -9 —H;]bTIB%kNT A I0 H;lﬂﬁ(Hgl)'

_ _ _ 1 -1 T T T — 1
where Bynt = Byt EQkNE) Biknt = NoTs  G€GY iV s=1 1=l isUit andBoknt = 55— icqo
-2 m; 1 T 2 _
w e T2 )= iy i) for =1 0

REMARK 3. Biyt is written as the difference between two terms that are derived from the first and
second order Taylor expansions of the PPL estimating equation, respectively. Comparing the above result
with HK, we find that the quantities Q0 Hj; and By coincide with the corresponding terms in HK; see the
remark after Lemma S1.12 for details. Then we can use the formula in HK to estimate the asymptotic bias
and variance with obvious modifications. Alternatively, we can use the jackknife to correct bias; see Hahn
and Newey (2004) and Dhaene and Jachmans (2015) for static and dynamic models, respectively.



P
AT . . . ~ _ . 1
If group membership is known, the oracle estimator of j is given by Go = AgMiy, FF  eqo

321 ( it; & ~;( %)) Then following our asymptotic analysis or that of HK, we can readily show that

i
Vo Ce = %) — HynrBrnt 2 o H; 'Qx(H, ')’ under Assumptions Al and A3. Theorem 2.4 indi-
cates that the PPL estimator ", achieves the same limit distribution as this oracle estimator. In this sense,

we say that the PPL estimators { "4} enjoy the asymptotic oracle property. In additi%, givelr%) the estimated

T

groups ; we can obtain the post-Lasso estimator of , by ", = argming, ﬁ Gy t=1 (a5 &

" ( x)) The following theorem reports the asymptotic distribution of ~

i ¢
Theorem 2.5 Suppose Assumptions A1-A3 hold. Then/ 1 ("a — 2)—H;§,TIB%;€NT A I0 H;le(Hgl)'

k
for =1 o where Byt is as defined in Theorem 2.4.

REMARK 4. Theorems 2.4 and 2.5 indicate that " and "~ G, are asymptotically equivalent. In a totally
different framework, Belloni and Chernozhukov (2013) study post-Lasso estimators which apply OLS to the
model selected by first-step penalized estimators and show that the post-Lasso estimators perform at least
as well as Lasso in terms of rate of convergence and have the advantage of smaller bias. Correspondingly, it

would be interesting to compare the higher-order asymptotic properties of " and "~ ¢, in future work.

REMARK 5. Note that our asymptotic results are “pointwise” in the sense that the unknown parameters
are treated as fixed. The implication is that in finite samples, the distributions of our estimators can be
quite different from normal, as discussed in Leeb and Potscher (2008, 2009). This is a well-known challenge
for shrinkage estimators. Despite its importance, developing a thorough theory on uniform inference in this

context is beyond the scope of the present work.

2.5 Determination of the Number of Groups

In practice, the exact number of groups is typically unknown. We assume that  is bounded from above by
a finite integer ¢ and study the determination of the number of groups via some information criterion

(IC). By minimizing (2.5) with o replaced by ~ we obtain the C-Lasso estimates { ; (1) "x( 1)} of

{ ; &} where we make the dependence of ; and ", on (1) explicit. As above, we classify individual
into group 1) if and only if ~, ( 1)="k( 1), ie, gk N={ e{12 b 1) =
"k ( 1)} for =1 Let ~ ( D={"1( 1) Tk ( 1)} The post-Lasso estimator of { is

denoted as "~ Cr(K M) We propose to select  to minimize

-

2XXX3
1 1)=—

it} ey il Grkan) T OINT (2.9)
k=1icGy (K ) t=1

where |y is a tuning parameter. Let ~ ( ;) = argminj<g<g,.. 1( 1) See Wang, Li, and Tsai
(2007), Liao (2013), and Lu and Su (2016) for the use of a similar IC in various contexts.

Let ) = (Ff(l P K’K)Il—)’e any  -partition of {1 2 ¢ } and Gk a collection of all su%l partitilojns.
~2 _ 2 K T 1 A . . _ . 1 T
Let GK) = NT k=1 i€Gr.k t=1 its GK,k 2( GK,k) Where Grr = arg Hllnak W iEGK,k =1

( it; & "5 ( k). We add the following two assumptions.

ASSUMPTION Ad. As (| ) — 00 minjcger, infouoeg, 2w — 2 2 where 2= limy1)—oo
2 ' Ko T E[ o0 o ]
NT k=1 ieG) t=1 ity ko



ASSUMPTION A5. As ( )— 00 ynyr—0and Nyp — 0.

Assumption A4 is intuitively clear and applies under primitive conditions in a variety of models, such as
panel autoregressions. It requires that all under-fitted models yield asymptotic mean square errors that are
larger than 3, which is delivered by the true model. A5 reflects the usual conditions for the consistency of
model selection: ;7 cannot shrink to zero either too fast or too slowly.

The following theorem justifies the use of (2.9) as a selector criterion for
Theorem 2.6 Suppose Assumptions A1-A5 hold. Then ( ( 1)= o) — 1 as( ) — 00

REMARK 6. As Theorem 2.6 indicates, as long as 1 satisfies Assumption A2(i), we can ensure that the
correct number of groups is chosen w.p.a.1. In practice, we can fine-tune this parameter over a finite set,
eg, Mi={ 1= ; /3

such that 1 . (1) 1) is minimized. We can show that with such a choice of ; Theorem 2.6 continues

j= o dfor =1 } for some ¢ 0 and 1 That is, we pick up 1 € Ay
to hold. Alternatively, we can consider a data-driven cross-validation procedure.

2.6 The Special Case of Linear Models

i ¢ i ¢
For the linear model in (2.3) with I|E-;> it‘l:;t ?i =0, we h%;/e (it ¢ 4) :Fﬂl it Gt ’ ()=
_ _ N Pr i - - T . _ _
i — Teoand Nt (B) = Rp o1 o1 it — 4t where =4, 4 Tu= u4— 4 and ;.

and ~;; are analogously defined. So the PPL problem becomes the penalized least squares (PLS) problem
considered in Su, Shi, and Phillips (2014, SSI()t hereafter). In addition, we can verify that ,( ;) =E(%.) —

B i Ca Z‘>:_Iit_ va— i (it g i):_lit_ Lt — Pl o )=
a= D Caws ) PCws 0=1 DCws )= wh Un=—alu—BE(w)] Uy =
[a—B(C)] 4 U= &—B() au( D=1 s )=% B «—BC)][ «—E(:)]}
1 XX ,
Qr = — B{ it is[ it —B("i)][ s —B(7:)]'} and
t=1 s=1
1 D /
Hir = — EB{[ a—-EC)I[ a«a—-E()]}
=1

With the above calculations, we can readily verify that Assumptions A1(ii), (iv)-(v) and A3 hold under weak
conditions. In addition, we can show that

1 XXX

il is —E(7)] =B+ p(1) and Bognr

i€GY t=1 s=1



analogously defined as * ¢, Inpractice, - 2(; (KAr) is frequently replaced by its natural logarithm as in standard

BIC to obtain h i

1( 1):1n AQG(K)Q) + INT (210)

which will be used in our simulations and applications. But because the fixed effects are eliminated in the
within-group transformed model, the v/ -convergence rates of their estimates won’t play a role to ensure
the selection consistency of | SSP show that the requirement on |z can be relaxed with Assumption
A5 replaced by:

ASSUMPTION A5*. As ( ) =00 ynr — 0 and np Np — 00 where nr = V2 V2 4f s

1/2 1/2

strictly exogenous and min( ) otherwise.

2.7 Extension to the Mixed Panel Structure Models

In some applications, certain parameters of interest may be common across all individuals whereas others
are group-specific. For instance, Pesaran, Shin, and Smith (1999) constrain the long-run coefficients to be
identical across individuals while assuming the short-run coefficients to be heterogenous, or in our case,
group-specific. Example 4 above is another instance. To keep up with the early notation, we write the
negative log-likelihood function as ( i; ; ;) where is the common parameter and the , have
a group structure as before. The negative profile log-likelihood function now becomes 1 n7(8 ) =
T fV:1 3:1 (¢ "i(; ) where ";(; )= argmin, % ;F:l (a5 g i) Then we can

estimate 8 and « by minimizing the following PPL criterion function

(Ko) 1 X K
ivta, Bea )= anr(B )+— I = &l (2.11)
i=1
Our previous analysis can be followed to establish uniform consistency for the classifier and the oracle
property for the resulting estimators of the group-specific parameters ; and the common parameter
When we have time effects { ,} we generally cannot eliminate them through transformation even in
a linear panel structure model because of the slope heterogeneity. In this case, we need to estimate =

(4 +) jointly with 8 and a in (2.11). A formal asymptotic analysis of this case is left for future work.

3 Penalized GMM Estimation of Panel Structure Models

This section considers penalized GMM estimation of linear panel structure models when some regressors are

lagged dependent variables or endogenous.

3.1 Penalized GMM Estimation of a and 3

To stay focused, we restrict attention to the linear panel structure model in (2.3).! We consider the first
differenced system
Ag= TN y+A 4 (3.1)

I Extension to general nonlinear panel data models with endogeneity and nonadditive fixed effects (e.g., Ferndndez-Val and
Lee 2013) is possible but rigorous analysis raises additional statistical challenges and is left for future research.
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where, e.g., A = 44— j4-1for =1 and =1 and we assume that ;5 and ;o are observed.
Let ;+ bea x 1 vector of instruments for A ;; with >  Define A ; = (A ; A ;) with similar
definitions for A ; and A ; We propose to estimate 8 and a by minimizing the following penalized GMM
(PGMM) criterion function?

X
K 2 K
NP B @)= 2 (B)+ 27 IO~ 4l (3.2)
i=1
Py N P, i ¢l h P, ¢i .
where o n7(B) = % i1 T o1 it D — A i INT 7 g it D= A iNT IS a
X symmetric matrix that is asymptotically nonsingular and 5 = on7 is a tuning parameter. Minimizing

(3.2) produces the PGMM estimates & and 8 where & = (", "k,) and B=(, )

3.2 Basic Assumptions

- P _ -
Let i.az =% thl a(A ) and oA =B[ iaal) Let 5, =(A i (A ) L) (4 )= alA -

'A ) and () = ﬁ thl{ (4 )—E[ (4 )]} Let B; denote the parameter space for , We

make the following assumptions.

ASSUMPTION,BI. (i) gt 0 g foncach =1 and =1 . .

.. o_ o 1 l:)N o_ 02 o_ °

(i) supgep, v (¢) = pr() § =1 ir(4) "= p()where ;€B; and (max; “;p( ;) =2

(In )3Ty) = _— forany o Oand 0 ¢

(iii) max; s ~i,zAa: — _i,zAxZ > = ! for any 0 and lim inf 7y oo Ming 5, ( _Q’ZAI CiaAz)
= _2_2 0 : A

(iv) There exist nonrandom matrices ; such that (max; | N7 — 4||> )= ~1 for any 0
and liminfy_ 0o min; .y, ( 5)=_w O o o

(v) There exists a constant o 0 such that mini<g<;<k, ° = ?o >

(vi) ¢ s fited and  — € (01) for each =1 0as — 00

ASSUMPTION B2. (i) 3 (In )6+%4es 00 lc%Ld o(ln )% — 0 for some 0 as ( ) — 00

(ii) For any given 0 max; ° ! thl i 4°> o —0as( ) — o0

_ P _ _
ASSUMPTION B3. (i) For each =1 0, k NLk e ;zm; i izan— & 0as( ) — o0
1

B P - P D
(ii) For each = 0 JNTF  i€GY theda NT D= vt > (0 pas( ) — oo

Assumption B1(i) specifies moment conditions to identify © BI(ii) is a high level condition. Its first
part can be verified by applying Donsker’s theorem. For example, if there exists F;; a -field, such that
{ . Fit} is a %tationary ergodic adapted mixingale with size —1 (e.g., White 2001, pp. 124-125), and
Var' "“ir( ) — '8 €(0o00)as — oo for some X; 0 and any nonrandom € R with || | =1
then =, » ( ;) 5 (0 ¥;) and the first part of B1(ii) follows. The second and third parts of B1(ii) can be

verified by the Markov inequality and the application of Lemma S1.2(iii) in the supplement under strong

2We were unable to establish asymptotic theory for the case where the criterion Q2,~nT () is replaced by the fully pooled
criterion @271\]7“ ()= [ﬁ Z1N:1 2;1;1 zit (Ayie — BgAxit)]OWNT[ﬁ Zf\;l Zle zit (Ayse — B%Amit)], where Wy is asymp-
totically nonsingular. We also found that Arellano and Bond (1991) GMM estimation is not applicable to handle unobserved
slope heterogeneity. Noticing this, Fernandez-Val and Lee (2013) used a criterion similar to Q2 y7 ( ) in the nonlinear panel
setup. As we shall see, the use of Q2 n7 () means that the PGMM estimator generally does not have the oracle property.
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mixing conditions. B1(iii) provides a rank condition to identify ¢ Bl(iv) is automatically satisfied for

iNT = 4 the x identity matrix. B1(v)-(vi) and B2(i) parallel A1(vi)-(vii) and A2(i). B2(ii) holds

true by Lemma S1.2 in the supplement if {( ;+ A ;) > 1} is strong mixing with geometric decay rate and
i+ ¢ has six plus moments.

B3(i)-(ii) can be verified under various primitive conditions. For example, if (a) B (A ) [>T 0
for some 0 bl'—)’{ i it A i) > 1} is strong mixing for each with mixing coefficients ; ( ) that
satisfy — ~ zeGO oyl 2+0)/U oo (¢) {(A i i)} is stationary along the time dimension and 11D
along the individual dnnensmn forall € 9 and (d) ;= V € © then B3(i) is satisfied with

={E[ #(A )1} E[ (A )]V € 9 To verify B3(ii), for simplicity we assume that ;ny7 = 4

and make the following decomposition

1 X . X
S ;zAgc itA it

Foieay t=1

1 XXX , 1 XXX )

=TI 35 E(A i is itA it)+T3/2 E(A is is) it
k ieGY s=1t=1 k i€GY s=1t=1
1 X XX , , )
REYERY {IA i i —E(A i i) al i —B(A s io atd i)}
k i€GY s=1 t=1

= kNT + kNT + kNT 83y, (3.3)

where pny7 and in7 contribute to the asymptotic bias and variance, respectively, and ;n7 is a term

that is asymptotlcally n thglble under suitable conditions. Then B3(ii) is satisfied with ;n7 = 4 if

D
KNT = 7077 i€Gd =1 teae itD i — (0 g)and gn7 = p(1) both of which can be verified
k:

by strengthening the conditions given in (a)-(c) above. Note that 7,;1 kNT signifies the asymptotic bias of

" which may not vanish asymptotically but can be corrected; see Section S2.2 in the supplement.?

3.3 Asymptotic Properties of the PGMM Estimators
3.3.1 Preliminary Rates of Convergence

We first establish the preliminary consistency rate of (E, Q).

Theorem 3.1 S’uppose 4ssumpt2gn BI holds and o = (1) Then (i) ,— Y= p 124 5 for
e 0o i 0 P ~ 0 0 i1
=1 (i) % L% = 90 = »p and (i) “q)y Tk (1 k)= P
where (" (1) " (k,)) 18 a suitable permutation of ("1 " k,)

REMARK 7. Remark 1 applies here with obvious modifications. As before, hereafter we simply write ™

for ")) as the consistent estimator of ) and define w={ e{12 b, = g} for =1 0

3If Conditions (a)-(b) are satisfied and FE | z;Aei|*T® > 0, by the Davydov inequality, we have ||Brnr| <
T\/W ZlEGO Zt 1 Zg 1 HE’ [AziszgszitAsit] H =0 ((N/T)l/z) , which is o(1) if T > N and usually asymptotically non-

negligible otherwise.
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3.3.2 Classi bcation Consistency

Let Hiowsi { 15| 153% and Thows1 { 15| 153 for I=1>==and@= 1> = ==beN
Hiow /s30 Hhowand Thow /3, 1 ngw3We establish uniform classbcation consistency in the next
theorem.

~ P ~
Theorem 3.2 Suppose that :Assumptigns Bl-B~2 hold. Then (i) "r’\,':"l Hnhow iOl SHiow $ O0as
(Q>)Ws 4sand (i) ("N Thow N STnow $0as(Q>)Ws 4=

REMARK 8. Remark 2 also holds for the above theorem with obvious modfications. Let 30
{12> == I and Kigw= { | 5 Jg}&heorem 3.2(i) implies that (™ | o Kigw "o S(Hnow
$ 0>meaning that all individuals are classiped into one of the Ny groups w.p.a.l.

~ P ~
Let Qn 81 1{ I 5 J } =The following corollary parallels Corollary 2.3.

Corollary 3.3 Suppose that Assumptions B1-B2 hold. Thenbn Qn=r1rs(1) =

3.3.3 Improved Convergence and Asymptotic Properties of Post-Lasso

The following theorem establishes the asympitic distribution of the C-Lasso estimators {~ }.

S _j ¢ —
Theorem 3.4 Suppose Assumptions B1-B3 hold. Then Oy W~ , °" D'E,ow$ QO > bF,DY
for n=1>===> N

REMARK 9. In contrast to the PPL case, the PGMM estimators {~ o} may fail to possess the oracle
property. If the group identities were known in advance, one could obtain the GMM estimate™ 30 of On{, )



Theorem 3.5 Suppose Assumptions B1-Bf hold. Then /. & ("¢, — 7) A (0 Q) where Q, =

Qw8 R W, w R ® B wm =1

i ¢
REMARK 10. To prove the above theorem, we first apply Theorem 3.2 and show that v/ & - Gr 2 =

v (~G2 — 994 p(1) That is, the post-Lasso GMM estimator " &, is asymptotically equivalent to the

oracle estimator ~go. To obtain the most efficient estimator among the class of GMM estimators based on

the moment conditions specified in Assumption B1(i), one can set 1(\;6% to be a consistent estimator of ,;1

Alternatively, we can consider Arellano and Bond (1991) GMM estimation based on the estimated groups.

The procedure is standard and details are omitted.

REMARK 11. If ;nr= % “iar= " foreach € 9 in Assumption B3(i) (which is unrealistic

before knowing the group identity), and pnx7 = 0 in Assumption B3(ii), then ; = i’g; (k) 321,

p= B g ® W and v 00 B 0ay)






Table 1: Frequency of selecting =1 5 groups when =3

N T DGP 1 DGP 2 DGP 3

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
100 15 0 0 0.994 0.004 0.002 0 0.232 0.762 0.004 0.002
100 25 0 O 1 0 0 0 0.016 0.984 0 0 0 0.096 0.646 0.242 0.016
100 50 0 O 1 0 0 0 0 1 0 0 0 0 0.986 0.014 0
200 15 0 O 0.890 0.106 0.004 0 0.022 0.970 0.008 0
200 25 0 O 1 0 0 0 0 1 0 0 0 0.106 0.668 0.226 0
200 50 0 O 1 0 0 0 0 1 0 0 0 0 1 0 0

Next, given the true number of groups, we focus on the classification of individual units and the point

estimation of post-Lasso.?

Due to space limitation, all tabulated results are produced under ,, = 05

= 1 2, for the linear models, and », = 005 for the Probit model. The outcomes are found robust
over the specified range of constants. Column 4 of Tables 2 shows the percentage of correct classification
of the  units, calculated as % f:‘)l e, H 9 = 91 averaged over the Monte Carlo replications.

Columns 5—7 summarize the post-Lasso estimator’s roo



Table 2: Classification and Point Estimation of o

% of correct Post-Lasso Oracle
N T classification RMSE Bias Coverage RMSE Bias Coverage
DGP1 100 15 0.8935 0.0594  0.0105 0.8758 0.0463  0.0012 0.9336
100 25 0.9674 0.0384  0.0018 0.9344 0.0353  0.0001 0.9362
100 50 0.9964 0.0249  0.0000 0.9528 0.0245 -0.0002 0.9348
200 15 0.8987 0.0432  0.0077 0.8650 0.0324 -0.0013 0.9410
200 25 0.9661 0.0272  0.0015 0.9228 0.0250 -0.0006 0.9394
200 50 0.9966 0.0174  -0.0001 0.9496 0.0171  -0.0002 0.9424
DGP2 100 15 0.8063 0.0711 -0.0123 0.9562 0.0502  -0.0037 0.9090
100 25 0.8974 0.0461  -0.0060 0.9760 0.0351  0.0011 0.9336
100 50 0.9689 0.0278  -0.0011 0.9860 0.0242 -0.0010 0.9320
200 15 0.8151 0.0557  -0.0159 0.9436 0.0352  -0.0017 0.9308
200 25 0.9037 0.0328  -0.0047 0.9664 0.0252  -0.0006 0.9442
200 50 0.9711 0.0193 -0.0014 0.9842 0.0164  0.0000 0.9304
DGP 3 100 25 0.7941 0.1701  0.0805 0.7856 0.1077  0.0114 0.9376
100 50 0.9456 0.0859  0.0231 0.8970 0.0752  0.0090 0.9504
200 25 0.8277 0.1325  0.0777 0.7214 0.0821  0.0116 0.9104
200 50 0.9527 0.0635  0.0223 0.8818 0.0573  0.0121 0.9280

via a dynamic Probit model. Due to space limitation, we only report the estimated coefficients in the main
text. Summary statistics, group membership, and additional details of implementation can be found in the

Supplementary Material.

5.1 Savings Rate Dynamic Panel Modeling and Classification

Understanding the disparate savings behavior across countries is a longstanding research interest in de-
velopment economics. Theoretical advances and empirical studies have accumulated over many years; see
Feldstein (1980), Deaton (1990), Edwards (1996) Bosworth, Collins, and Reinhart (1999), Rodrik (2000),
and Li, Zhang, and Zhang (2007), among many others. Empirical research in this area typically employs
standard panel data methods to handle heterogeneity or relies on prior information to categorize countries
into groups. Classification criteria vary from geographic locations to the notion of developed countries ver-
sus developing countries (Loayza, Schmidt-Hebbel and Servén, 2000). This section applies the methodology
developed in the present paper to revisit this empirical problem.

Following Edwards (1996), we consider the simple regression model
it — 14 i,t—lJF 2 it + 3 it + 44 it + iJF it (5-1)

where ;; is the ratio of savings to GDP, ;; is the CPI-based inflation rate, ;; is the real interest rate,

it 18 the per capita GDP growth rate, ; is a fixed effect, and ; is an idiosyncratic error term. Inflation

i
characterizes the degree of the macroeconomic stability and the real interest rate reflects the price of money.
The relationship between the savings rate and GDP growth rate is well documented, with the latter being
found to Granger-cause the former (Carroll and Weil, 1994). The first-order lagged savings rate is added to

the specification to capture persistence of the savings rate.
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Data are obtained from the widely used World Development Indicators, a comprehensive dataset compiled
by the World Bank. For many countries the time series of real interest rates are often short in comparison
with the other variables. Using the time span 1995-2010, we were able to construct a balanced panel of
56 countries. Substantial heterogeneity across countries was observed in all these major macroeconomic
indicators. Evidence of within group homogeneity is therefore particularly important in supporting panel
data pooling techniques.

This dynamic panel model can be estimated by either PLS or PGMM. We first try PLS, which has
higher correct classification ratio in our simulation when = 15. Following the simulation, ;7 is set as
%( )_1/ 2 and the IC picks two groups and the tuning parameter constant , = 1 55 over all combinations
of =1 5 and , in a geometrically increasing sequence of 10 points in (0 2 2). Based on this
choice of tuning parameter, the data determine the group identities. Interestingly, some geographic features
remain salient in the classification. For example, we observe a strong collection of Asian countries in Group
1. In particular, except for South Korea and the city state Singapore, Group 1 includes all Eastern Asian
and Southeastern Asian countries in our sample, namely, China, Japan, Indonesia, Malaysia, Philippines,
and Thailand.

Table 3: PLS and PGMM estimation results

Variables PLS PGMM

Pooled FE Groupl Group2 Pooled GMM  Groupl Group?2

Lagged savings 0.7609"** 0.6952***  0.6939"** 0.5854 0.4026 0.6373"*
(0.0322) (0.0433) (0.0449) (0.4588) (0.3095) (0.3197)

Inflation —0.0145 —0.1601***  0.1967"** 0.0350 —0.1647"* 0.4128***
(0.0324) (0.0388) (0.0435) (0.0621) (0.0733) (0.0758)
Interest rate —0.0346 —0.1490***  0.1226™** —0.0333 —0.1580"* 0.1395*
(0.0313) (0.0397) (0.0408) (0.0598) (0.0729) (0.0775)

GDP growth 0.2027*** 0.2892***  0.1127** 0.2081*** 0.1853***  0.2061**
(0.0353) (0.0413) (0.0517) (0.0541) (0.0627) (0.0908)

Note: *** 1% significant, ** 5% significant, * 10% significant

Columns 3—4 in Table 3 report the results for the PLS-based post-Lasso estimation, in comparison with
those for the pooled FE estimation in Column 2. The estimates are bias-corrected by the half-panel jackknife
(Dhaene and Jochmans, 2015), and the standard errors (in parentheses) are clustered at the country level.
Compared with Edwards (1996), the FE results re-confirm the significance of lagged savings and GDP growth
rate as well as the insignificance of inflation and interest rates in the determination of savings rate. This

result also lends support to the conventional wisdom



estimated group identities reveal 84% overlap with the PLS classified membership, and the coefficients in

columns 6-7 of Table 3 are comparable to those from PLS.

5.2 Dynamic Probit Panel Modeling of Civil War Conflict

According to a conservative estimate, direct casualties from civil confl



group, but no such relationship is found in the high-occurrence group.

Table 4: Probit, FE Probit and PPL estimation results

Variables Probit FE Probit Post-Lasso PPL
high-occurrence low-occurrence
coef. s.e. coef. s.e. coef. s.e. coef. s.e.
Lagged civil war 3.1955"**  0.1156 3.2649***  0.1140 3.3012***  0.1363 2.9630"**  0.2707
GDP per capita growth  —0.4359***  (0.1155 —0.3854*** (.1389 0.1591 0.1193 —1.2072***  0.2220
population growth —0.0125 0.1107 0.0162 0.1284 —0.0448 0.1429 0.2811 0.1736

Note: *** 1% significant, ** 5% significant, * 10% significant

6 Conclusion

We propose a novel and systematic approach to identify and estimate latent group structures in panel data,
developing panel penalized profile likelihood (PPL) and panel GMM (PGMM) methods for classification and
estimation, and providing asymptotic properties for use in inference. The PPL method enjoys the oracle
property but PGMM typically does not. Post-Lasso estimates are also studied and a BIC-type information
criterion is proposed to determine the number of groups. These techniques combine to provide a general
approach to classifying and estimating panel models with unknown homogeneous groups, heterogeneity across
groups, and an unknown number of groups. Simulations show that the approach has good finite sample
performance and can be readily implemented in practical work. Two applications reveal the advantages of
data-determined identification of latent group structures in empirical panel modeling.

The present work raises interesting issues for further research. First, it may be appealing to consider
a more general framework that allows the number ( () of groups to grow with the sample size. Close
examination of the theory provided in this paper suggests that it is possible to permit ¢ to increases with

but at a very slow rate. Second, both the linear and nonlinear models may be extended to include time
effects or interactive fixed effects (IFE). In linear models with IFE but without endogeneity, we remark that
the present approach can be used in conjunction with principal component analysis to address cross sectional
dependence modeled through IFE. Extension to nonlinear models or to models with endogeneity will raise
new statistical and computational challenges. Third, our method can be extended to nonstationary panels
where panel unit and cointegrating relationships may possess latent group structures. Some of these topics

will be explored in future work.
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APPENDIX

A Proofs of the Results in Section 2

: P .
Proof of Theorem 2.1. () Let vz ( ) =4 1 (a5 5 o( Dand G (@)= wvri( o)
+ 1HkKo | o= &l Let i= ;= fand ;= ;— § Since " ( i):argmin,”% 321 (it; 0 o) we
have 7 Z;l i(at; 5 ") =0V , Then by second order Taylor expansion and the envelope theorem,
we have
. i ¢ 1o SR 10 S T R
e ) = aNni 5 = — it 0 a0 —— ity Qi
t=1 t=1
NS .o
= iitg i i) i (A1)

where



of the property of @ By (A.1) and the Cauchy-Schwarz inequality
3 .

- i
K — ~ K 1 ¢
gNO:g,,\l g+ va - gN%Z,Al B’ a’
X 3 - o
1 ~ . v X, 1 Ko o
= 5= i i at— it — IGL°y

i=1 i=1 i=1



envelope theorem, the first order condition (with respect to ;) for the minimization problem in (2.5) yields
that

1 X . 3 o Ag
Opx1 = == iCats o O+ 0 I 0T = e
t=1 j=1
1 X i 1 ki o Ml \/—3A A'_’_ly<£ i it a
= = it S —op 83 ik Y i ity 4 i i - it
Vo i~ kS Voo
1 ¢ X . o, ) g
+ ZEH‘/_ k= 2 +\/_ 1 leK:Ol,l;éjo i 1°
j=1,j#k
= a4+ o+ a3+ at s (A.9)

| if ||, — 5|l # 0 and ||| <1 otherwise, the second equality follows from the first

vhere " = [5a] - ‘
order Taylor expansion and rearrangement of terms, 33 = igg iaa (+) is defined in (A.2), , lies

i
between Ai and ¢ elementwise.
Let sany = ( ~Y2(n )®+ 1)(In )” Let denote a generic constant that may vary across lines. By

(A.4) and Lemmas S1.6-S1.7 in the Supplement, we can readily show that
3 o o -

(]

o i ¢
max® ;— °> sqnp = ' 1" for some 0 (A.10)

which in conjunction with the proof of Theorem 2.1(iii), implies that

Vo= %> ()Y = 1" and max pi— o > 92 = -1 (A.11)
ie€GY)
3 o o - . ¢
e~ 2 1 .. . .
By (A.10)-(A.11), maX;eqo © i5® > N = —1° Combining these results with those in
. — 1 _
Lemmas S1.6(v) and S1.11(i), we have (Exy7) =1— 1" where
Y% - - Yo W2 ° ¢o Yo Yo s ° Y
_ - - - i
BELNT = max “p; — <2 n max 83 — 83 ?°< g2 N max® ;3°< (In )3+U
ieGY i€GY ied
% ° ° Y Yo s ° Ya
N max® 4°< (In )" N max° ;5°< N
lGGg zeGg
Then conditional on =,y we have uniformly in € 2
o3 -3 “o o3 - o o3 -3 “o
o ~ R N ~ ~ ~ o o ~ R "'~ o o ~ R N ~ ~ o
° i k 2t i3+ wut 5 e =2 o =Tk 20 —° ;— k i3+ a4t 5 °
o o o o i
o o o o
~ OA ~ o o ~ o 3+
> 1k © 43— k% — =k 200 TV anr
o o
o, o
o o

> V1 9°7, = "k° 4 for sufficiently large ( )

where the last inequality follows because v/ 1 > 2 (In )3+V ++v  1sanT by Assumption A2(i). Then for

all € gwe have

3 - 3 -
. . 0 . . . . .
( kNTH) = € k] € p = - a= e+t 3+ at i
U= -, - -3 -3 -9
< S B T i * 2+ 3t at s
30 o -
~ o
< ° a°>vV 104 Enve + Einp)—0as () > oo
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where =f \ denotes the complement of Z;np and the convergence follows by Lemma S1.6(iv) and Assump-

-1

tion A2 . Consequently, we conclude that with probability 1 — the difference :;?— ", must reach the -

point yvhereq:H . — &l is not differentiable with respect to , forany € 9. Thatis ©° , - "3°=0| € 9 =
- o
. P . P, P .
For uniform consistency, we have: (Uf:(’1 NT) < 5201 ( knT) < 5201 e ( knTs) and by
Lemma S1.6(iv)

x>x 2 7 B> h 3¢ 3 ] '
ENT, < °lae>V 104 Eve + Einr)
k=14€G9 k=1ieGY ~
A3 ° L}
< 1K s ey 1= (1) (A.12)
IISHZE%)%V o ito = «@ - .
t=1
This completes the proof of (i). . ¢
i

(ii) Pretending each individual’s membership is random, we have € 9= 4, —