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Recent evidence indicates that using multiple forward rates sharply predicts future excess returns on U.S.

Treasury Bonds, with the R2s being around 30% . The projection cocfficients in these regressions exhibit a
distinet pattern that relates to the maturity of the forward rate. These dimensions of the data, in conjunction
with the transition dynamics of hond yiclds, offer a serious challenge to term structure models. In this
article we show that a regime-shifting term structure model can empirically account for these challenging
data features. Alternative models. such as alfine specification, fail to account for these important features.
We find that regimes in the model are intimately related to bond risk premia and real business cycles.
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1. INTRODUCTION

Term structure models with rcgime shifts, considered by
Naik and Lec (1997) and Bansal and Zhou (2002), capture
the important feature that the aggregate economy is subject
to discrete and persistent changes in the business cycle. The
business cycle fluctuations, together with the monctary policy
responsc to them, have significant impacts not only on the short-
term interest rate, but also on the entire term structure. Regime-
shifting term structure models represent a parsimonious way of
introducing interactions between the business cycles, the term
structure, and risk premia on bonds. Using the U.S. Treasury
yield data from 1964 to 1995, Bansal and Zhou (2002) found
that the model-implied regime changes usually lead or coin-
cide with economic recessions. Therefore, the term structure
regimes seem (o confirm and complement the real business cy-
cles. This evidence also allows for the possibility that this class
of term structure models may be able to capture the dynamics
of risk premia on bonds.

The most common strategy for understanding bond risk pre-
miums is to study deviations from the expectations hypothesis.
One form of the violation, that the regression of yicld changes
on yicld spreads produces negative slope coefficient instcad
of unity (Campbell and Shiller 1991), has been uddressed in
many recent articles (e.g., Roberds and Whiteman 1999; Dai
and Singleton 2002; Bansal and Zhou 2002; Evans 2003). An-
other form of violation of the expcctations hypothesis is that
the forward rate can predict the excess bond return (Fama and
Bliss 1987). More recently, Cochrane and Piazzesi (2002) doc-
umented that using multiple forward rates to predict bond ex-
cess returns generates very high predictability of bond excess
returns, with adjusted R*'s from the regression of around 30%.
Further, they showed that the coefficients of multiple forward-
rate regressors form a tent-shaped pattern refated to the maturity
of the lorward rate. The size of the predictability and nature of

The main contribution of this article is to account for the
predictability evidence from the perspective of latent factor
term structure models. When evaluating the plausibility of var-
ious term structure models, it is important to not focus ex-
clusively on the predictability issue; previous work (e.g., Dai
and Singleton 2000; Bansal and Zhou 2002; Ahn, Dittmar,
and Gallant 2002) highlights the difficulties that many received
models have in capturing the transition dynamics of yields (i.e.,
conditional volatility and conditional cross-correlation across
yields). The predictability evidence, in conjunction with the
transition dynamics, constitutes a sufficiently rich set of data
features for discriminating across alternative term structure
models and to evaluate their plausibility. The main empirical
finding of this article is that the regime-shifting term struc-
ture models can simultaneously justify the size and nature of
bond return predictability and the transition dynamics of yields.
More specifically, we find that models with regime shifts can re-
produce the high predictability and the tent-shaped regression
coefficients documented by Cochrane and Piazzesi (2002). Ad-
ditionally, the regime-shifting term structure model reproduces
the dynamics of conditional volatility and cross-correlation
across yields. In contrast, commonly used multifactor Cox—
Ingersoli-Ross (CIR) (Cox, Ingersoll, and Ross 1985) and
affine models cannot capture these dimensions of the data. Our
overall evidence indicates that incorporating regime shifts is
important for interpreting key aspects of Treasury bond market
data.

We use U.S. Treasury yield data from 1964-2001. The pe-
riod 1996-2000 poses a tough challenge for standard asset
pricing models, with unprecedented long economic growth
and bull market run. At the same time, this period includes
several cconomic recessions and periods of economic boom.
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Using the whole sample, we find that the conditional corre-  where Z/.:m 7 =1 and 0 < zi < 1 In addition to the
lation between the long and short yields vary over a range  discrete regime shifts, the economy is also affected by a
of about 40-80%. The conditional volatilities of the long and Con[inuousjsta]_e variable,

short yields also reveal very large variations. Despite this, when
evaluating the U.S. Treasury yiclds data from 1964-2001, our Xipt = Xo =Ky (O = Xi) + 050 Xettr1, @

regime-shifting model still stands out as the best-performing  where Ky Doy s il O, 2are e regime-dependent mean

candidate. The regime indicator is related to business cycles in FAVELION., 100 T, mean., And VOlallifs RaRR R Al
the data; for example, the model-based regime indicator pre- Eihaen narameters. are shipes. fn, diserafe reeime St S
dicts the 2001-2002 recession. ! ically, Xrp1 — X; = k080 — Xi) + co/Xstry1 if the regime

To estimate various models under consideration, we usc the see1 =0, and Xep1 — Xo = 1101 — Xp) + o1/ Xpttrs1 if the
efficient method of moments (EMM), developed by Bansal. | yegime 5, | = 1. Note that the innovation in process (2), i1, is

X L el

conditionally normal given X; and s, . For analytical tractabil =
“ry weeassamme tiactineprocess tortegrine Shitts sy 1 mdepel
et K, = o s s Sl et s s ranahe)
made in Hamilton's regime-switching models. We also assui
that the agents in the cconomy observe the regimes, althou

the cconometrician may possibly not observe the regimes.

[
The pricing kernel for this cconomy is similar to that in \I;i
dard models, except for incorporating regime shifts, |
, 3 .
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‘  ker sented a general equilibrium model that h‘:ul\hwhvgwnm(.
wel i (3).
nel . | —
K with With regime shifts, we conjecture that the bond priccm
/. i periods (o maturity at date 1 depends on the regime §—
1= 0. 1.and X,
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| 1 . . —
5 0N 'he one-period-ahead bond price, analogously, depenez

5 and X, ., i
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In this section we review the term structure model with

regime shifts proposed by Bansal and Zhou (2002). The deriva-
l_ tion focuses on a single-factor specification; the multifactor ''v on
extension is straightforward (see Bansal and Zhou 2002). To
capture the idea that the aggregate economy is subject to regime
} shifts, we model the regime-shifting process as a two-state

Markov process, as was done by Hamilton (1989). Suppose that

the evolution of tomorrow’s regime, s,.+1 = 0, 1, given today’s

REme, s =", '1, 18 GUyRmEny e s prandniitoy -

trix of a Markov chain,
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Given information regarding s;, X;, and the regime transition
probabilities, agents integrate out the future regime, s, 1, which
leads to the risk premium result stated in (4). In the absence
of regime shifts, the risk premium in (4), wonld. simply, ha
—X;B(n — 1)A. Hence incorporating regime shifts makes the
“beta” of the asset (i.e., the coefficient on X;) be time varying
and dependent on the current regime. This fashion of making
the asset “beta” time varying is potentially important for cap-
furing the hehavior of. tisk. pramiacun 'vurdss. inclin neded e

market price of risk (i.e.. the risk premium for an asset withua
unit exposure to u;41) is E,[)\S,N‘/om,‘ls,]«/)—(,, which is clearly

regime dependent.

solving for the unknown coefficients A and B. In particular.

Bo(n)
Bi(n )_

10
(1 — kg — ro)Bo(n—1) ',n(‘;'[if)w — 1)+ 1
>) X N | 212 (
(I =k —=A)Bi(n—1) orBin—1)+1
and
M A~ r N4 Ny N

The foregoing regime-shifting term structure model does
not entertain the possibility of separate risk compensation for
regime shifts. In other words, the risk premium for a sccurity
that pays | dollar contingent on a regime shift at date ¢ + |
is 0. The model can be extended to include explicit and sepa-
rate compensation for regime-shifting risks. Such an extension
entails additional parameters, however. We have not discussed
or pursued this more embellished version of the model, because
we found identifying and estimating its parametcrs very difti-

Wigfaltiy - o dogiaal e {rie =kl OH g i .

/ Given (4), the solution for the bond prices can be derived b
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3. EMPIRICAL ESTIMATION AND
MODEL EVALUATION

3.1 Estimation Methodology

To utilize a consistent approach for evaluation and estimation
across the different models, we rely on the simulation-based
EMM estimator developed by Bansal et al. (1995) and Gallant
and Tauchen (1996). The EMM estimator comprises three
steps. The first, the projection step, entails estimating a reduced-
form model (the auxiliary model) that provides a good statisti-
cal description of the data. Multivariate bond yiclds are difficult
data to model, because they exhibit extreme persistence in lo-
cation and scale, time-varying correlations, and non-Gaussian
innovations. Because we do not have good a priori information
on the specifications of a model that captures all of these fea-
tures, we utilize a seminonparametric (SNP) series expansion.
The SNP expansion has a vector autoregressive—autoregressive
conditional heteroscedasticity (VAR-ARCH) Gaussian density
as its lecading term, and the departures from the leading term
are captured by a Hermite polynomial expansion. We elected
to use a simpler, ARCH-like leading term instead of a gener-
alized ARCH (GARCH)-type leading term because of the sim-
ilar problems with multivariate GARCH-type modelis of bond
yields noted by Ahn et al. (2002).

In the second step, the estimation step, the score function
from the log-likelihood estimation of the auxiliary model is
used to generate moments for a generalized method of moments
(GMM)-type criterion function. The score function provides a
set of moment conditions that are true by construction and are
to be confronted by all term structure models under consider-
ation. In the computations, the score function is averaged over
the simulation output from a given term structure model and
the criterion function is minimized with respect to the parame-
ters of the term structure model under consideration. By using
the scores from the nonparametric SNP density as the moment
conditions, each model is forced to match the conditional dis-
tribution of the observed 6-month and 5-year yields. Being a
GMM-type estimator, EMM provides a chi-squared measure of
goodncss of fit. In particular, the normalized objective function
acts as an omnibus specification test, which is distributed as a
chi-squared test (as in GMM) with degrees of freedom equal to
the number of scores (moment conditions) minus the number of
parameters in the particular term structure model. The distance
matrix (the weight matrix in GMM) used in constructing the
specification test is identical across different model specifica-
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Table 1. Summary Statistics

399

1-month  3-month  6-month... 1-vgar., 2-vear. 3-vear. 4-vear. 5-vear
Mean 5.9424 6.3765 6.5971 6.8106 7.0156 7.1711  7.2909  7.3545
Standard deviation ~ 2.4499 2.5767 26038 2.5239 24559 23814 2.3491 2.3240
| Skewness 1.4278 1.3717 1.3041 11737 1.1288 1.1283 1.1003  1.0565
Kurtosis 5.1336 4.8778  4.4157 4.0313 3.7344

5.4659

4.1226 3.9196

NQTE:.  ThasneareARS  manthhyAbuservations 6r'tne yidias withs mdwitiies. ™ ne tidta are dotdanrel rrom UHSH Trngas uny B s ifine,

ranging from June 1964 to December 2001

verge to virtually any smooth distributions, including mixture
distributions (as is the case with a model of regime shifts).

The third step is reprojection, or postestimation analysis of
model simulations. Because EMM is a simulation-based esti-
mator, long simulated realizations from each estimated model
are available for analysis. These simulations can be used to
compute statistics of interest that can be compared to analo-

1

ries and cross-sectional aspects of term structure data, we focus

sions, which, as stated earlier, provides potential economic mo-
tivation for incorporating regime shifts. The summary statistics
of these monthly yields are displayed in Table 1. On average,
the yield curve is upward sloping. The standard deviation, pos-
itive skewness, and kurtosis are systematically higher for short
maturities than for long ones. To incorporate important time se-
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Figure 1. Observed Short-Term (a) and Long-Term (b) Rates.
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in ARCH specification (L, = 5). The preferred specification ac-
commodates departures from conditional normality via a Her-
mite polynomial of degree 4 (K. = 4). This “scmiparametric
ARCH? specitication is similar to that proposed by Engle and
Gonzdlez-Rivera (1991) and allows for skewness and kurtosis
in the crror distribution. The total number of parameters for the
specification is 7, = 28; hence each model must confront a total
of 28 data-determined moment conditions.

The conditional moments of the estimated SNP density for
the observed interest rates are available analytically. It is fairly
instructive to focus on some specific aspects of the estimated
nonparametric SNP bivariate density. The top pancl in Figure 6
(Sec. 3.6) gives the estimated conditional volatilitics and cross-
correlations of the 6-month and 5-year yields, which seem to be
very persistent and fairly volatile. The 6-month yicld has a wide
range of conditional volatility that pcaks around 1980, whereas
the range for the 5-ycar yield volatility is narrow. The range for
the conditional correlation is from about 40% to 80%, a wide
range indeed. The most volatile period for bond yields, the early
1980s. is associated with a considerahle drop in the conglitional

Journal of Business & Economic Statistics, October 2004

directly on bond excess returns, and hence our estimation does
not directly utilize information on the predictability of bond re-
turns. We use the estimated model to evaluate via simulation,
if the model can reproduce the predictability regressions dis-
cussed by Cochrane and Piazzesi (2002). These predictability

regressions are challenging for two reasons. First, the size of

the predictability is fairly high; the R?’s in these projections are
quite large. Second, the nature of the predictability—the “tent
shape” of the multiple regression coefficients—captures the un-
conditional covariation of future bond returns with current for-
ward rales. A reasonable term structure model should account
for both of these features of the predictability along with the
important data aspects embodied in the bivariate SNP density
for 6-month and S-year yields.

3.3 Model Estimation Results

Table 2 gives the main EMM estimation results for four dif-
ferent models: one-factor regime-shifting (1-factor[RS]), two-

gru—=

Table 2. Model Estimation by Efficient Method of Moments

) R il 2ien

/=] S mlal]
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Associated with this 3-factor[AF] specification are three mar-
ket prices of risk parameters, which, as before, we label Ay,
k=1,2,3. ]n all, there are 13 parameters to estimate. As re-
ported in Table 2, the 3-factor[ AF] specification is sharply re-
ipated. with, X2 (15, =42 803 and.ap valne of. L7 Inamoie
general semiparametric setting, Ghysels and Ng (1998) rejected
the affine restrictions on the conditional mean and variance of
yields.

The 2-factor[RS] model can be viewed as a three-factor
model with the regime-shifting factor being a multiplicative
or nomiiedar whid’ faevor: for-a fair comparison of "this model,
we also estimated a three-factor affine term structure model,
(3-factor[AF]), preferred by Dai and Singleton (2000), who
found considerable empirical support for this specification us-
ing the post-1987 swap yield data. The discrete time counterpart
1o thig affincanydfaniiani .

X141 — X1 = k101 — X1) + o1/ X1et1141,

Table 3. Diagnostic t-Ratios

Parameter Description 1-factor[RS]  2-factor[CIR]  2-factor[RS]  3-factor[AF]

Hermite
A1) 00 00
A(2) 01 00 .30 —1.038 —.752 .528
A(3) 10 00 2.13 .240 —.646 .898
A4) 02 00 1.47 1.874 1.809 2.215
A(5) 11 00 -3.13 —2.258 1:2561 —1.402
A(B) 20 00 2.36 —2.752 1.921 —1.538
MY Us YU Us -7z — 152 “1.45
A(8) 30 00 .40 —1.093 —.442 —.5682
A(9) 04 00 1.05 2.018 1.634 2.384
A(10) 40 00 2.20 —1.230 1.423 —.389

Mean
v(1) u(1) 2.61 .263 —1.022 1.100
¥(2) u(2) —.69 —.716 —.299 —.487
¥ (3) u(1), y(1), lag 1 -1.75 .859 .963 .568
v(4), uld 1) laayt —11, —A03, — 242 — 213
¥ (5) u(1), y(2), lag 1 —2.31 534 1.312 017
~luf5E), AN A ETs 24, LT S8 1560
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one- or two-factor models, but it still has 4 out of 13 ARCH  1991). Bansal and Zhou (2002) provided evidence that the two-
scores and 2 out of 9 Hcrmite scores thul arce not well matched.  factor regime-shifting model is the only one that can replicate
thL\JVD(‘ ()f exneclaﬁnmh\mmhmm violation at the sharter ma-

Following the same conventions of Cochrane and Piazzesi
2000, wr wuks with ey hndopicrs (R, ',vkl is the Ing A thre

nrica 2t 2fi 2wk yees Rerdd, and ramrtaic AR, WRlAs andi -
| |

turns, so y, = —p, is.the geometeic vipddoan, the T-vear hand..
Cochrane and Piazzesi (2002) considered the regression of ex-
“ CESS TEWTTS UL 'Uutus vl tie VR wid the forward rates., 1

k I
ex ;10 = Bro + Br1y,

| . S
1 o o
% ) + ) Bk + €k
i=2
v whereexk ) =pll —pk—y] is the excess return on the k ye

bond and f* = pf~1 — pk is the forward rate. Note that exH_l

is effectively, the retwm. an.halding a. k. vear. hand. for. 1. vear i
excess of the 1-year yield. This excess return data is collecte
monthly, which leads to the usual overlap in return data.

Table 4. Pred/ctab///ty of Bond Excess Returns Usmg Multiple Forward Rates

R? 4-year 1-year, 3-year 1-year, 3-year, 5-year  1-year, 3- to 5-year  1-to 5-year

R?’s in the data

2-year bond 1744 2619 .3088 .3187 .3280

3-year bond 1322 2538 .3326 .3357 .3373

4-year bond .1368 2634 .3406 .3617 .3639
5-year bond 1297 12640 .3163 .3308 .3336
Coefficient Intercent 1-vear 3-veat RRAL R2

2'69‘30 -8, 1863 6.2503 .2579

28.6284

5- year bond

NOTE:  The dependent variable in all of the rearegsions is the 1-vear return from holdina a bond with n vegrs to maturitv less the vield on a bond with one vear
» adjusted for degrees of freedom. The sample size in the data is 451 observations. In the top

to maturity. This annual excess return is tracked monthly. All R?"

e lictability, recgrssian is o nsingg 1. 20 304 mu‘x‘ AU TR S MEYNASSUIS, TS I 6 7F 1Y 1 -, -, o PEd  ROIVRI T U T s o dmRaS
the same as using additional forward rates (see 1-, 3-5, and 1-5 years) focus on the 1-, 3-, and 5-year prc ons. Newey—West robust standard errors are
reported in ;mu:nlrm:;«*:; in the “Regression Coefficients and R? in the Data” section for this projection. The s reported for the 1-factor[RS], 2 f'l(‘tm[(\IHL

;—— 2-factor[RS], and 2-factor[AF] models are based on simulating 50,000 observations from the imated term structure model and running the same regression ¢ lﬁ
i= ~neptaida il aadgression Coetticients and H< 1n the Data” section
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timated parameters of the four models, we simulate 50,000
monthly data and run the same regressions of cxcess bond
returns on forward rates. As seen in the lower panel of Ta-
ble 4, the 2-Tfactor[RS| model not only achieves the highest
predicting R? (20-36%), but also clearly closely mimics the
tent-shaped regression coefficients. On the other hand, the
2-factorfCIR] model produces a skewed and inverted tent
shape, and the 3-factorfAF] model produces a inverted tent
shape. Both models achieve R”’s around 10-20%. Interest-
ingly, even the 1-factor|RS] model can replicate the tent shape
to some degree, even though its R” is only about 19%. These
patterns arc quite apparent in Figure 2. These results suggest
that the prediction capability of forward rates for excess returns
may be explained by two or three lincar factors, whereas the
tent pattern of regression coefficients appears to be duc o the
regime-shifting nature of the yield curve.

The analysis of Duffee (2002) and Dai and Singleton (2002)
suggest that allowing more flexible specification of the risk pre-
mium parameters for the conditional Gaussian factor model can

dramatically improve its ability to match the predictability of

cxcess returns. To explore this argument, we have also esti-
mated the “preferred essentially affine Ap(3) model™ discussed
by Duffee (2002) with three Gaussian factors and cight market-
price-of-risk parameters (we call it the 3-factor|EEA] modcl).
The chi-squared test of overall specification is 29.278 with 9 de-
grees of freedom and a p value of .0006; hence the model is not
supported by the data. The estimation result suggests that the
3-factor] EA] model overshoots the excess returns predictabil-
ity. the R* range from 26% to 65% vis-a-vis 30% obscrved in
the data. More importantly, it cannot reproduce the tent shape
of the predictability regression cocflicients. Further, its perfor-
mance for cross-sectional pricing error is somewhat worse than
that of the three-factor affine model. Our diagnostics for this
model specification reveal that the implied conditional volatil-
ity and conditional correlations of yiclds do not match those in
the data. Given this result, for brevity we do not present very
detailed evidence on this specification.

3.5 Regime Indicator, Risk Premium, and
the Business Cycle

We now explore the cross-sectional implications of the term
structure models over the maturities that are not used in the
model estimation. We also look at the association between the
bond market implied regimes and the real business cycle. For
the 2-factor[CIR | and 3-factor[ AF] models, a standard method
is used to calculate the pricing errors. Because the yield curve
solution is linear in the factors, we first invert from two or
three basts yields to get the latent factors and then use the lin-
ear pricing solution to calculate the nonbasis yields. For the
[-factor[RS] and 2-factor[RS] models, the presumption that
agents in the cconomy know the current regime implies a strat-
egy to recover the regimes. Specifically, dates are classified into
regimes according to which of the two yield curves producces
the smallest pricing error. Under the null of correct specifica-

Journal of Business & Economic Statistics, October 2004

TaRIR &, Arrage Atusdide Prrinry erivn (vests puntes)

1-factor[RS]  2-factor[CIR]  2-factor[RS]  3-factorfAF]

Mean 45 44 27 31
Median 34 40 19 23
Star ) 21U, 22 2%
Minimum 5 5 3 1
Maximum 223 156 154 188

Table 5 reports the time-series average of pricing errors
/Ty L, PE, () or other statistics from the cross-sectional av-
erage PE,(1) = 1 /N SN_ Vi(t, n) — Yy(t, n)|, where ¥,(2, n) is
the calculated yield and Y,(z, n) is the observed yield for ma-
turity n at time t (where the current state s is inferred from
minimizing the pricing errors of the two yield curves, as men-
tioned carlier). It is clear from the sample statistics that the
2-factor|RS] model has the smallest average pricing error and
also the smallest standard deviation in the pricing error. The
maximal pricing error associated with the 2-factor[RS] specifi-
cation is also the smallest. Further, on average the pricing er-
ror is only about 27 basis points for the annualized percentage
yields. The 3-factor| AF] specifications have average pricing er-
rors ol 31 basis points, which in an absolute sense is also quite
small. The 1-Factor[RS] and 2-factor[CIR] models achieve sim-
ilar pricing results as 44 to 45 basis points.

It has been well recognized that the slope of the yield curve
(i.e., spread) has the ability to predict future real GDP growth;
in particular, negative spreads tend to predict a recession (see,
c.g.. Harvey 1988; Estrella and Hardouvelis 1991). Figure 3
recreates this linkage between the monthly yicld spread, our
regime indicator for regime 0 (our low regime), and the Na-
tional Burcau of Economic Research (NBER) business cycles
recession indicator. Most of the time, it seems that the cconomy
is in regime 1. The total number of regime switches recovered
from the sample period is 44. The regime relates to the NBER
business cycles. Our low regime (regime 0) obtains during or
before recessions in the economy. In the data, the correlation
between NBER business cycle indicator and the yield spread
(5-year yield minus 6-month yield) is 15%. In general, the yield
curve becomes inverted (or flat) several months before the eco-
nomic growth becomes negative (or depressed). Our regime in-
dicator is mostly 0, as Figure 3 shows, when the yield curve
becomes inverted (or flat). The correlation between the model-
based regime indicator and the yield spread (5-year yield minus
6-month yield) is 24%; that is, our high regime (regime 1) co-
incides with a high yield spread and our low regime (regime 0)
largely coincides with a low yield spread. Therefore, as reported
by Bansal and Zhou (2002), the regime indicator has the power
to predict recessions. The correlation between the NBER busi-
ness cycle (NBER recession as regime 0 and NBER boom as
regime 1) and our regime indicator is .1117. In the context of
modeling the short interest rate, Ang and Bekaert (2002) also
documented the links between regime shifts and business cy-

i‘ ;Lli e (LT R Pt =

{

cles.
o e R | Nt ]

L
L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Journal of Business & Economic Statistics, October 2004

(a)
Ex-Post Excess Return, Regime Indicator, and Business Cycle

s

“Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bansal, Tauchen, and Zhou: Regime-Shift Term Structure Model

6mn Yield: Observed

5yr Yield: Observed

0 0.5 1 =1

-0.5 0 0.5 1

-1 -0.5
MR Y PR RS R ¢ MRIRY: 1 - rator S [/l
3 3l
27 ol
1t
N i , ) 0 /
0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5
n Yield: 2-Factor[CIR] 5yr Yield: 2-Factor[CIR] 6m
. . 1 [ . . . —
3t : 3t ]
2} 2]
-
1 / \ ' //\
op—"", . Easess o . 1
1 0.5 0 0.5 1 i 0.5 0 0.5 1
5yr Yield: 2-Factor[RS] 6mn Yield: 2-Factor[RS]
'{) /,/7‘ g"j \
/ \ / y ‘

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



408 Journal of Business & Economic Statistics, October 2004

®mn'vol. Uoserved Byr'vol. Ubserved Bmn-5yr Cor. Ubserved
2l ) | 1
155
1 0.5 0.5
0.5

0 0 0
1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000

6mn Vol. 1-Factor[RS] 5yr Vol. 1-Factor[RS] 6mn-5yr Cor. 1-Factor[RS]
2 1 e
1.5
1 0.5 0.5
0.5

0 0 0
1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000

6mn Vol. 2-Factor[CIR] 5yr Vol. 2-Factor[CIR] 6mn-5yr Cor. 2-Factor[CIR]

2
1.5

1

M o A T

ol ' ol 0
1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000

6mn Vol. 2-Factor[RS] 5yr Vol. 2-Factor[RS] 6mn-5yr Cor. 2-Factor[RS]

g 1p 1
15

1 0.5 0.5
0.5

J ‘()l J
1970 1980 1990 2000 g 1970 1980 1990 2000 1970 1980 1990 2000

<
D

6mn Vol. 3-Factor[AF] 5yr Vol. 3-Factor[AF] 6mn-5yr Cor. 3-Factor[AF]
2 1 1
P ‘ e ‘ WM\W
1‘ l | v.5}, {?\j L}M hw‘hm\/ 0.5 r
0.5

0 0
1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2090

Figure 6. Reprojected Volatilities and Correlations.
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4. CONCLUDING REMARKS Ang, A, and Bekacert, (. (2002), “Regime Switches in Interest Rates.” Jowrnal
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