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Abstract

This paper analyzes the formation of networks when players choose how much to invest in each relationship. We suppose that
players have a fixed endowment that they can allocate across links, and in the baseline model, suppose that link strength is an
additively separable and convex function of individual investments, and that agents use the path which maximizes the product of
link strengths. We show that both the stable and efficient network architectures are stars. However, the investments of the hub may
differ in stable and efficient networks. Under alternative assumptions on the investment technology and the reliability measure,
other network architectures can emerge as efficient and stable.
© 2008 Published by Elsevier Inc.
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1. Introduction

Following a long tradition in sociology, economists have recently focussed attention on the role of social networks
in economic activities. One of the main contributions of this emerging literature has been to propose strategic models
of network formation, where self-interested agents establish bilateral links in order to maximize their utility. Following
the pioneering work of Bala and Goyal (2000) and Jackson and Wolinsky (1996), most of the literature assumes that
agents make a discrete decision—namely, choose whether or not to invest in a link of fixed quality. However, in a
wide variety of contexts arising in both formal and informal networks, agents do not only choose with whom they
link, but also how much they spend on every link they form. In this paper, our objective is to study a model of network
formation, where the quality of links is endogenously chosen by the agents.2
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Our analysis is centered around communication networks—networks where agents derive positive benefits from
the agents with whom they are connected, with benefits decreasing as the distance increases between two agents.
Communication networks can either be formal networks (like the phone or Internet), or informal networks of social
relations.3 In formal communication networks, the reliability of a communication link depends on the physical char-
acteristics of the connection; in informal social networks, the strength of a social link depends on the frequency and
the length of social interactions. In both cases, it is commonly observed that different links may have different qual-
ity, and that agents can choose the amount they invest on every relation. Communication networks thus represent an
obvious testing ground for a theory of network formation with endogenous link strength.

The modeling of network formation with endogenous link strength poses new conceptual difficulties, which were
absent in the literature where links have a fixed, exogenous value. First, the technology transforming individual in-
vestments into the quality of a bilateral link needs to be specified. In this exploratory analysis of the formation of links
with endogenous quality, we focus attention on the simple situation where agents’ investment decisions are indepen-
dent. We also assume that agents may face a fixed cost in the formation of links. This leads us to specify the strength
of a link as an additively separable and convex function of agents’ investments. In this setting, agents do not need the
consent of their partner to form a link, and the model can be interpreted as a generalization of Bala and Goyal’s (2000)
version of one-sided, two-way flow model of link formation. In a later Section of the paper, we also provide a partial
analysis of the case of perfect complements, where the strength of a link is given by the minimum of both parties’
investments. This case is reminiscent of Jackson and Wolinsky’s (1996) model of link formation with consent, and
our analysis generalizes their approach to handle weighted networks where agents optimally “match” investments on
their bilateral link.

The second difficulty stems from the modeling of benefits from indirect connections. In the existing literature, it
is assumed that agents always choose to connect through the shortest path, and that indirect benefits are a decreasing
function of the length of the connection.4 When link strength is endogenous, it is natural to suppose that agents
choose to connect through the path with the highest reliability (measured by the product of link strengths normalized
to belong to (0,1))—which is not necessarily the shortest path. However, this is not the only way to model the
reliability of an indirect connection. At the end of the paper, we consider an alternative model, where the value of an
indirect connection depends on the weakest link along the path.

Throughout the paper, we consider the following problem. We suppose that agents are endowed with a fixed en-
dowment X, that they allocate across different connections. Our first task is to compute the strongly efficient network
architecture, which maximizes the sum of benefits of all agents. In a second step, we characterize the set of stable
networks, obtained when agents form relations in a voluntary, decentralized manner. Because of the well-known co-
ordination problem in noncooperative games of bilateral link formation, we consider two equilibrium concepts. We
say that a network is Nash stable if it is immune to individual deviations, and strongly pairwise stable if it is immune
to deviations by individuals as well as pairs of agents.

The main results of our study can be summarized as follows. We first show that the efficient network must be a star,
that is a network where one agent (the hub) is connected to all other agents, while peripheral agents are only connected
with the hub. Moreover, when link strength is a linear function of individual investments, the unique efficient network
Please cite this article in press as: F. Bloch, B. Dutta, Communication networks with endogenous link strength, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.03.007
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weakest-link reliability, where the value of an indirect connection is independent of the distance, and is only af-
fected by the strength of the weakest link along the path. In this case, the symmetric star again emerges as an efficient
network architecture.5 The symmetric star is also strongly pairwise stable, as any deviation from a network where all
links have equal strength is bound to decrease the value of the weakest link.

Second, we consider the case where individual investments act as perfect complements in the “production” of link
strength. The efficient network architecture is now very different. Trees cannot be optimal, because end players of the
network waste part of their endowments, and have an incentive to invest what remains from their endowment on a
new link. Regular graphs (where all agents have the same number of links) are likely candidates for efficient network
architectures, and we show that for small numbers of players, the circle is in fact the efficient network architecture.
However, when the number of players increases, the circle can be dominated by other network architectures. Finally,
we note that the circle is always strongly pairwise stable.

Our results are related to the results obtained in the discrete link formation literature [Bala and Goyal (2000) two-
way flow model with decay, Hojman and Szeidl (2008) model with strong decreasing returns to scale and decay, and
Feri’s (2007) evolutionary model] and we now comment on the relation between our analyses. Bala and Goyal (2000)
also characterize the star as the efficient network architecture in their two-way flow model with decay when the cost
parameter is such that neither the empty nor the complete graph are efficient (Bala and Goyal, 2000, Proposition 5.5,
p. 1220). However, Nash equilibrium has little predictive power in their model, and even when they resort to the
refinement of strict Nash equilibria, they are unable to obtain a complete characterization in the two-way flow model
with decay (see Bala and Goyal, 2000, Proposition 5.3 p. 1215).) By placing additional restrictions on the benefit
function and the effect of decay, Hojman and Szeidl (2008) are able to fully characterize the set of Nash equilibria,
and show that it is a periphery-sponsored star (Hojman and Szeidl, 2008, Theorem 1). However, the characterization
of efficient networks in their model is complicated (see the Example 1 and Proposition 1 in Hojman and Szeidl, 2008).
Feri (2007) also characterizes periphery-sponsored stars as the unique stochastically stable equilibria of his model.

The similarity between these characterizations and our results are partly driven by our assumption on the link
formation technology. Because the formation of links typically involves a fixed cost, we find natural to assume that
link strength is a convex function of individual investments. As a consequence, agents have an incentive to concentrate
their investments on a single link, and the model appears to be similar to a model of discrete link formation, where
every agent forms a single link of maximal intensity. However, there remain significant differences between our model
of endogenous link quality and discrete link formation models. First, because we consider a richer set of weighted
networks, agents have more opportunities. To establish that the star is the efficient network in our setting is a much
harder task than in Bala and Goyal’s (2000) analysis, because we are optimizing over a much larger set of feasible
networks. Similarly, in the noncooperative game of link formation, we characterize best responses in a larger space of
strategies. Second, in our setting, the fixed cost can be made arbitrarily low, and we devote much attention to the case
of linear investments where the fixed cost is equal to zero. With linear investments, agents have no a priori reason to
concentrate their investments on a single link, and the emergence of equilibrium networks where some agents invest
all their resources in a single link is not driven by the assumption on technology but by the general structure of the
model. Finally, in our analysis, the concentration of investments in a single link is an equilibrium result rather than an
assumption. As we will argue below, the fact that agents could have invested in multiple links changes the analysis
deeply, and is the driving force behind our sharp characterization of Nash and strongly pairwise equilibria of the game
of link formation.

1.1. Related work

Given the obvious importance of networks with links of varying strength, a number of recent papers have proposed
models where agents choose how much to invest in a relationship. In some of these models, agents choose their
investment after the network has been established. For example, Bramoulle and Kranton (2007) study the agent’s
incentives to provide a public good once the network is fixed. In a specific model of strategic alliances among firms,
Goyal and Moraga Gonzales (2001) consider a two-stage model where firms first form links and then decide their
R&D investment. This is a model of “nonspecific networking” because the firm chooses the same investment across

5 However, this is not the unique efficient architectures—other networks which generate the same distribution of link strengths are equally
efficient.
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all its links. Durieu et al. (2004) also consider a model of nonspecific networking. Agents choose a single investment,
which applies to the links with all other agents. Still in the framework of nonspecific networking, Cabrales et al.
(2007) propose an axiomatic derivation of the relation between pairwise link intensities and agents’ “socialization
intensities”, represented by scalars. Brueckner (2003) considers a model of friendship networks. Agents choose to
invest in relationships, and the value of indirect benefits is given by the product of the strength of links. For most of
his analysis, Brueckner (2003) concentrates on three player networks, and studies the effect of the network structure
on the investment choices in the complete and star networks. Other papers, more closely related to ours, consider the
formation of the network and the choice of investments as simultaneous. Goyal et al. (in press) extend their analysis of
cost-reducing alliances by allowing firms to choose different investments on different links. Rogers (2005) proposes
a different model of network formation with endogenous link quality. In his model, links are directed and can be
interpreted as the influence that every agent has on another agent. As in our paper, agents allocate a fixed endowment
on different relationships. Agent’s utilities depend on the values of other agents in their neighborhoods, and are
defined in a circular way. Two different models are studied: one where agents receive value from their neighbors, and
one where they give values to their neighbors. In this environment, which is very different from ours, Rogers (2005)
characterizes Nash and efficient network structures, emphasizing the importance of heterogeneity across agents.

2. Model and notations

2.1. Investments and link strength

Let N = {1,2, . . . , n} be a set of individuals. Individuals derive benefits from links to other individuals. These
benefits may be the pleasure from friendship, or the utility from (non-rival) information possessed by other individuals,
and so on. In order to fix ideas, we will henceforth interpret benefits as coming from information possessed by other
individuals. Each individual has a total resource (time, money) of X > 0, and has to decide on how to allocate X in
establishing links with others.6

Let x
j
i denote the amount of resource invested by player i in the relationship with j . Then, the strength of the

relationship between i and j , sij is assumed to be a symmetric, additively separable function of x
j
i and xi

j ,

sij = φ
(
x

j
i

) + φ
(
xi
j

)
where φ(.) is a nondecreasing, convex function. Furthermore, we suppose that φ(0) = 0 and φ(X) < 1/2 so that
sij ∈ (0,1).

Some remarks are in order. First, we consider a setting where link strength is an additively separable function of
investments. This implies that an agent’s decision to allocate his endowment over direct links is independent of his
neighbors’ decisions. However, this does not mean that an agent’s investment strategy is independent of the choices
of other agents, as these choices affect the value of indirect links and hence the payoffs obtained in the game. Second,
Please cite this article in press as: F. Bloch, B. Dutta, Communication networks with endogenous link strength, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.03.007
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Given any g, a path between individuals i and j is a sequence i0 = i, i1, . . . , im, . . . , iM = j such that im+1im ∈ g

for all m ∈ {0, . . . ,M − 1}. Two individuals are connected if there exists a path between them. Connectedness defines
an equivalence relation, and we can partition the set of individuals according to this relation. Blocks of that partition
are called components.

Suppose i and j are connected. Then, the benefit that i derives from j depends on the reliability with which i

can access j ’s information. There are different ways to model how the strength of links affects the reliability of the
communication channel. In our view, the most natural interpretation is that the strength of a link is an index of the
quality of the transmission, so that messages sent along stronger links are more likely to be delivered without delay
or distortion. With this interpretation, the reliability of any path between i and j is given by the product of the link
strengths along the path. For any path p(i, j) = i, i1, . . . , iM−1, j , we thus define

r
(
p(i, j)

) = sii1 . . . sim−1im . . . siM−1j .

We assume that agents always choose to transmit information along the path with the highest reliability, and for any
connected pair of agents i, j , we let p∗(i, j) denote the most reliable path in the set of all paths P(i, j)

p∗(i, j) = arg max
p(i,j)∈P(i,j)

r
(
p(i, j)

)
.

The benefit of the connection from i to j is then given by

R(i, j) = r
(
p∗(i, j)

) = max
p(i,j)∈P(i,j)

r
(
p(i, j)

)
.

The total utility that agent i obtains in the weighted graph g can then be computed as:

Ui(g) =
∑
j �=i

R(i, j),

and the total value of the graph is given by

V (g) =
∑

i

Ui(g).

2.3. Efficient and stable networks

We now define efficient and stable graphs. The notion of efficiency that we use is the strong efficiency notion
introduced by Jackson and Wolinsky (1996).

Definition 1. A graph g is efficient if V (g) � V (g′) for all g′.

We now describe the concepts of stability that will be used in this paper.
Given any pattern of investments x, and individual i, (x−i, x

′
i ) denotes the vector where i deviates from xi to x′

i .
Similarly, (x−i,j, x

′
i,j ) denotes the vector where i and j have jointly deviated from (xi, xj ) to (x′

i , x
′
j ).

Definition 2. A graph g(x) is Nash stable if there is no individual i and x′
i such that Ui(g(x−i, x

′
i )) > Ui(g(x)).

So, a graph g induced by a vector x is Nash stable if no individual can change her pattern of investment in the
different links and obtain a higher utility.

Definition 3. A graph g(x) is strongly pairwise stable if it is Nash stable and there is no pair of individuals (i, j) and
joint deviation (x′

i , x
′
j ) such that

Uk

(
g(x−i,j, x

′
i,j )

)
> Uk

(
g(x)

)
for k = i, j.

A Nash-stable graph is strongly pairwise stable if no pair of individuals can both be strictly better off by changing
their pattern of investment. Jackson and Wolinsky (1996) define a weaker notion of stability—pairwise stability.
Please cite this article in press as: F. Bloch, B. Dutta, Communication networks with endogenous link strength, Games Econ. Behav. (2008),
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They basically restrict deviations by assuming that only one link at a time can be changed. Our current definition
corresponds to the definition of pairwise stability used by Dutta and Mutuswami (1997).8

We also recall that a tree is an acyclic connected network, (a connected network for which there does not exist a
sequence of nodes i0, i1, . . . , in such that ikik+1 ∈ g for i = 0, n − 1 and i0 = in). Among trees, a particular network
structure is the star.

Definition 4. A graph g is a star if there is some i ∈ N such that g = {ik | k ∈ N,k �= i}.

The distinguished individual i figuring in the definition will be referred to as the “hub.”

3. Efficient and stable networks

In this Section, we characterize the set of efficient and stable networks, and provide some intuition for our results.
The formal proofs are given in the Appendix. Our first Theorem characterizes efficient networks.

Theorem 1. Suppose φ is a separable, convex function of individuals investments. Then, the unique efficient network
is a star. Moreover, if φ is linear, then the unique efficient network is the symmetric star where the hub invests an equal
amount in all links with peripheral agents.

The intuitive explanation for this result is the following. The star is a minimally connected network, every periph-
eral agent concentrates his investment on a single link, and the distance between two nodes which are not directly
connected is minimized. All these features contribute to making the star an obvious candidate for the efficient net-
work. In fact, Bala and Goyal (2000) also show that the star is the unique efficient network architecture in the discrete
link formation model. The novelty of Theorem 1 is that the set of networks on which we optimize is much richer than
in Bala and Goyal (2000), as we allow agents to use weighted links. Hence, the main message of the Theorem is that
stars remain the unique efficient networks even if we consider a much larger set of weighted networks. Because the
set of networks on which we optimize is much larger, the proof of Theorem 1 is markedly different, and much more
involved than the proof of Theorem 5.5 in Bala and Goyal (2000).

In the proof, we first show that, by reducing the number of links to form a star, the aggregate benefits of the
network increase. By convexity, links become stronger, and the distance between nodes is reduced. However, the star
that is formed is not necessarily feasible—it could involve the hub investing more than her endowment X. To solve
this problem, we gradually reallocate the investments on the links in a way which increases the value of aggregate
benefits. Finally, we show that the value of the network increases when we merge two stars into a single one.

Our second Theorem shows that the star is also the unique Nash stable network for strictly convex investments,
and the only candidate for strongly pairwise stable networks with linear investments.

Theorem 2. (i) If φ is strictly convex, the unique Nash stable network is a star where the hub invests all her endowment
in a single link.

(ii) If φ is linear, a strongly pairwise stable network must be a star with (n − 1) peripheral nodes, and the set of

strongly pairwise stable networks is nonempty iff X � (n−1)2

n(n2−3n+3)
.

Theorem 2 characterizes the set of Nash stable networks when φ is strictly convex, and strongly pairwise stable
networks for linear φ. In both cases, stable networks are stars. With strictly increasing returns to scale, the hub
invests in a single link to a peripheral agent; for constant returns to scale, the allocation of investment of the hub

is indeterminate. The efficient symmetric star is stable as long as the endowment X is greater than (n−1)2

n(n2−3n+3)
, an

expression which is decreasing in n for n � 3, and converges to 0 as n goes to infinity.

8 The concept of “strong pairwise stability” has been used by different authors under different names. See Gilles and Sarangi (2004) and Bloch
and Jackson (2006) for an attempt to unify the terminology and a comparison of different stability concepts.
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In contrast to Bala and Goyal (2000), we characterize the star as the unique Nash stable architecture with a convex
technology, and the unique candidate for strongly pairwise equilibrium with a linear technology. The strategy of the
proof is related to Hojman and Szeidl’s (2008) proof even though the models and the arguments are different. With a
strictly convex link strength technology, we show that agents never have an incentive to invest in multiple links. Given
this “one-link property,” we progressively rule out all network architectures but the star.9

We first rule out cycles in equilibrium. Cycles arise when all agents invest fully on the link to their neighbor. Agents
must then access the same indirect benefits through any node in the cycle, so that the cycle is fully symmetric. An
agent then has an incentive to redirect his investment towards the neighbor who invests towards him, breaking the
cycle towards a line but increasing the strength of his direct link.

Once cycles are ruled out, we show that the only candidate equilibrium among trees are stars. For any tree with
diameter greater than or equal to three, we prove that there must exist terminal nodes who have an incentive to
reallocate their investment in order to decrease the distance of their indirect connections. Finally, we provide an
argument to show that disconnected stars cannot form in equilibrium.

When the link strength technology is linear, agents may invest in multiple links, and the marginal benefits of any
connection must be equalized. We use this fact to construct joint pairwise deviations, and are able to show that, in
any strongly pairwise equilibrium, if an agent invests in multiple links, all his neighbors must reciprocate by investing
their entire endowment towards him.10 This characterization enables us to use the same steps as in the case of strictly
convex link strength technologies to rule out all network architectures but stars.

Taken together, Theorems 1 and 2 also help us understand the gap between efficiency and stability in networks with
endogenous link strength. Efficient and stable networks are always stars, but the allocation of the hub’s investment may
differ. With increasing returns to investment, the hub invests all his investment in one link in equilibrium, but efficiency
may require him to spread his investment across links, in order to increase the benefits of peripheral agents. When φ

is linear, the symmetric star emerges as a strongly pairwise stable network when endowments are large enough. Since
this is the unique efficient network, this result identifies a condition under which efficiency is compatible with stability
when individual investments are perfect substitutes. It is interesting to note that the threshold value of X required to
ensure this compatibility becomes smaller and smaller when the number of individuals becomes large.

4. Extensions

In this section, we discuss two extensions of the analysis, one dealing with an alternative model of investment, and
the other with an alternative model of reliability.

4.1. Weakest link reliability

We now suppose that agents evaluate paths according to the value of the weakest link in the path rather than the
product of link strengths. This notion of “weakest link reliability” is useful for physical communication networks,
like the Internet, where the quality of a connection depends on the bottleneck of the network. Formally, we define the
alternative notion of reliability as:

r̂
(
p(i, j)

) = min
s
im−1im

∈p(i,j)
sim−1im .

Agents choose to use the paths with the highest reliability, and we define the benefit of a connection from i to j in
this setting as:

R̂(i, j) = max
p(i,j)∈P(i,j)

min
s
im−1im

∈p(i,j)
sim−1im .

With weakest link reliability, distance between nodes becomes irrelevant. Networks with different architectures but
with identical distributions of link strengths result in the same value. Hence, efficient networks will typically not be

9 This is also the structure of Hojman and Szeidl’s (2008) proof, which first establishes that agents invest in a single link (Lemma 2), then shows
that the distance between terminal nodes is at most two (Lemma 3) and finally rules out cycles and paths (Lemma 4).
10 Notice that this argument exploits the fact that individual investment choices are continuous, and has no equivalent in discrete models of link
formation.
Please cite this article in press as: F. Bloch, B. Dutta, Communication networks with endogenous link strength, Games Econ. Behav. (2008),
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unique. The next theorem shows that any efficient network with weakest link reliability is equivalent to a star—the
unique efficient network in our baseline model.

Theorem 3. Let φ be a separable, convex function of individual investments, and suppose indirect benefits correspond
to the notion of weakest link reliability. Then,

(i) Any efficient network is equivalent to a star.
(ii) If φ is linear, then any efficient network is equivalent to a symmetric star where the hub invests equal amounts

on every link. Moreover, the symmetric star is strongly pairwise stable.
(iii) If φ is strictly convex, a star where the hub invests in a single link is strongly pairwise stable.

The characterization of stars as efficient networks with weakest link reliability relies on arguments which are
very similar to those showing that stars are optimal in our baseline model. The main difference between the two
approaches is that efficient network architectures with weakest link reliability are not unique. In fact, when link
strength technology is linear, any tree with links of equal strength is efficient, and it can be shown that links of
equal strength can be obtained for any tree.11 As stars are strongly pairwise stable, the set of strongly pairwise stable
networks is nonempty.

A complete characterization of the set of stable networks is difficult. Since the value of a path depends on the
weakest link along the path, a joint reallocation of investments by two players leading to more equal link strengths
does not necessarily increase their payoffs. This lack of responsiveness of payoffs to individual choices prevents
deviations and results in a large number of strongly pairwise stable networks. The following example illustrates why
only a global reallocation of investments can improve individual payoffs.

Example 1. Let #N = 6. Consider a line where si,i+1 > 0 and sij = 0 if j �= i + 1. In particular, let s12 = s56 = 5/4X,
and s23 = s34 = s45 = 7/6X.

All individuals can gain if 2,3,4 and 5 relocate their investments so as to equalize link strength to 6/5X. However,
this joint deviation requires coordination among more than two agents and is not possible given our equilibrium
concept. No pair of agent has an incentive to deviate from their strategies, so this inefficient network is strongly
pairwise stable.

4.2. Investments as perfect complements

As a polar opposite to the case of perfect substitutes, we consider a model where investments are perfect comple-
ments, so that an agent only benefits from a relationship when the other agent also invests in the link. Formally,

sij = min
{
x

j
i , xi

j

}
.

When investments are perfect complements, agents should allocate “matching” investments on every link in order
to maximize direct benefits. This intuition suggests that the efficient and stable network architectures will be very
different from those obtained in the previous section. Stars will perform very badly, because the hub can only invest
a small amount on every link. In contrast, regular networks where all agents invest the same amount on every link
should perform fairly well.

Unfortunately, once indirect benefits are taken into account, the analysis of efficient and stable networks becomes
intractable. We have to content ourselves with partial characterization results summarized in the following Theorem.

Theorem 4. Suppose that individual investments are perfect complements. Then,
(i) An efficient graph cannot contain any component with three or more nodes which is a tree.
(ii) For 3 � n � 7, the symmetric circle where every link has value X/2 is the unique efficient network.
(iii) Moreover, the symmetric circle is strongly pairwise stable.

11 To prove this last statement, one has to construct an algorithm, where terminal nodes invest their full endowment on their predecessor, who
invest X/(n − 1) on their successors and (n − 2)X/(n − 1) on their predecessors, etc.
Please cite this article in press as: F. Bloch, B. Dutta, Communication networks with endogenous link strength, Games Econ. Behav. (2008),
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Theorem 4 establishes that trees cannot be efficient, and for small numbers of players (where distance does not
matter too much), the unique regular network of degree 2 is the efficient network. However, for larger numbers of
agents, efficiency may require a denser graph, where links are weaker, but distances between nodes shorter. Finally, we
check that the set of strongly pairwise networks is nonempty and contains the symmetric circle.12 Hence, comparing
the case of perfect substitutes and perfect complements, we see that in the latter case, efficient and stable networks
will be denser and more symmetric across players.

5. Conclusion

In this paper, we analyze the formation of communication networks when players choose how much to invest in
each relationship. We suppose that players have a fixed endowment that they can allocate across links, and in the
baseline model, suppose that link strength is an additively separable and convex function of individual investments,
and that agents use the path which maximizes the product of link strengths. Under these assumptions, we characterize
the optimal and stable networks. We also provide partial characterization results for alternative specifications of the
investment technology and the benefit function.

In our view, this paper provides a first step in the study of networks where agents endogenously choose the quality
of the links they form. One obvious drawback of our analysis is that agents are ex ante homogeneous. This assumption
leads us to conclude that links will all be of the same quality (in the case of linear investments), or that, due to the
hub’s investments, some agents will be better connected than others (in the case of convex investments). Neither of
these distributions of link intensities does justice to the broad array of social networks one observes in reality. In order
to study the formation of networks with varying link quality, and the effect of individual characteristics on the efficient
and stable distribution of link qualities, we need to introduce heterogeneity across agents. Following Rogers (2005),
we could consider agents who differ both in their attractiveness (the intrinsic utility they bring to other agents), and
their endowment. This seems to us to be a very promising avenue for future work.
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Appendix A

Proof of Theorem 1. We prove the first statement in two steps. Consider any feasible component h of g of size m

where the total amount of investment is mX.13

Step 1. We construct a feasible star S with higher aggregate utility than h, whenever h is not a star.
Step 2. If the graph g contains different components, we construct a single connected star which has higher aggre-

gate utility than the sum of the stars.

Proof of Step 1. Order the link strengths of the component h so that:

z1 � z2 � · · · � zK.

Construct a star S by picking an agent at random (say agent m), and connecting him to the (m − 1) other agents with
links of strengths z1, z2, . . . ,

∑K
k=m−1 zk in the following way:

12 A complete characterization of the strongly pairwise stable networks is a difficult task. Since investments on a link are strategic complements,
multiple equilibria typically arise, making the analysis of the entire game intractable.
13 If the total amount invested in the component is strictly smaller than mX, then clearly the sum of utilities of agents in the component cannot be
maximal.
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for all i = 1, . . . ,m − 2, xm
i = min

{
φ−1(zi),X

}
, xi

m = φ−1(zi) − xm
i ,

xm
m−1 = min

{
φ−1

(
K∑

k=m−1

zk

)
,X

}
, xi

m = φ−1

(
K∑

k=m−1

zk

)
− xm

m−1.

Let si , i = 1, . . . ,m − 1, denote the strengths of the (m − 1) links in the star. Notice that by construction,

si = zi, i = 1, . . . ,m − 2, and sm−1 � zm−1. (1)

In this star, direct benefits are exactly equal to those of the component h. We show that indirect benefits have
increased. In the star S, indirect benefits are given by:

I = 2
m−1∑

i �=j,i,j=1

sisj .

Let D = {ij | i and j are not neighbors in h}. So, D is the set of pairs of nodes which are not directly connected in
h, and so derive indirect benefits from each other.14

Suppose first that h is a tree, but not a star. For each pair i, j in D, let zti and ztj denote the strengths of the two
terminal links in the unique path p∗(i, j). Clearly, for all i, j ∈ D,

Rp(i, j) � zti ztj . (2)

Moreover, since h is not a star, the (geodesic) distance between at least one pair of nodes, say i, j in h must be at least
three. Hence, the inequality must be strict for such i, j since the maximum strength of any link is strictly less than one
and the indirect benefit is the product of link strengths along the most reliable path. Also, note that each pair of nodes
in D is associated with a unique pair of terminal links, and that one can construct exactly (m−1)(m−2)

2 pairs of terminal
nodes out of the set {z1, . . . , zm−1}. So, letting I ′ denote the sum of indirect benefits in h, the following inequality
must be true:

I ′ < 2
m−1∑

i �=j,i,j=1

zizj = I

where the last equality follows from Eq. (1).
Suppose now that h is not a tree, so that the cardinality of D is now strictly less than (m−1)(m−2)

2 . We can again
associate a unique pair of terminal links (zti , ztj ) to any pair of nodes i, j ∈ D.15 Eq. (2) will hold again, aggregate
indirect benefit in h is I ′, where

I ′ < 2
m−1∑

i �=j,i,j=1

zizj � I. (3)

The first inequality holds because there are now fewer than (m−1)(m−2)
2 pairs in D, and the sum is being taken over

the product of the pairs which can be formed out of the strongest (m − 1) links.
If the star S is feasible, then this completes the proof. However, S may not be feasible. By construction, each

peripheral agent invests no more than X. However, the construction may involve the center m investing more than X.16

We now show how to construct a feasible star from S which will have at least as large direct and indirect benefits
as S, and hence strictly larger aggregate benefits than h.

Claim 1. Consider the star S constructed above. If, for all i = 1, . . . ,m − 1, xm
i = X, then

∑m−1
i=1 xi

m � X, and so the
star S is feasible.

14 Note that if ij ∈ h, but the link strength is so weak that they do not derive direct benefits from each other, then h cannot be efficient; both i

and j should switch their investment from ij to some other link.
15 Since h is not a tree, there may be more than one most reliable path connecting i and j . The tie-breaking rule used to select some most reliable
path—and hence the terminal links—is not important since the pair (zti , ztj ) can only be terminal links for the pair (i, j).
16 However, the feasibility of h and convexity of φ ensures that the total resource used up in S does not exceed mX.
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Proof of Claim 1. Suppose all peripheral agents invest X on the link with m. Then,

m−1∑
i=1

xi
m =

m−2∑
i=1

φ−1(zi) + φ−1

(
K∑

k=m−1

zk

)
− (m − 1)X

�
K∑

i=1

φ−1(zi) − (m − 1)X

� X.

We thus observe that, if star S is not feasible, there must exist a link k such that xm
k < X. Of course, xk

m = 0.
Choose any i such that xi

m > 0. Consider the new star S̄ where the only change from S is that x̄m
k = min{X,

xm
k + xi

m}, and x̄i
m = xi

m − (x̄m
k − xm

k ). Let s̄k − sk = ε and si − s̄i = δ. Then, ε � δ from convexity of φ. That is, this
transfer of resource from link i to link k must (weakly) increase aggregate direct benefit.

We now check the effect of this change on indirect benefits. Let Ī and I be the aggregate indirect benefit in S̄ and S

respectively. Then,

Ī − I = 2

[
(ε − δ)

∑
j �=i,k

sj + (sk + ε)(si − δ) − sksi

]
� 2(εsi − δsk − εδ)

� 2ε(si − sk − δ)

= 2ε(s̄i − sk)

� 0.

The last inequality holds because s̄i = φ(X) + φ(x̄i
m) � φ(X) � sk .

So, aggregate benefit is at least as high in S̄ as it is in S. If S̄ is not feasible, then we can continue to transfer
resources from the hub to some peripheral node in the same way, until some star with aggregate benefit at least as high
as S is feasible. �
Proof of Step 2. Consider two feasible stars S1 and S2 of sizes s1 and s2. Construct a new star S∗of size s1 + s2
centered around the hub of S,m2, with the following investments:

x
m2∗
i = X for all i �= m2,

xi∗
m2

= xi
m2

.

In terms of direct benefits, the only change between the new star S∗ and the stars S1 and S2 is that the hub of S1
now invests fully on its link with m2. Given the convexity of φ, this change must have weakly increased aggregate
direct benefits. Consider next the indirect benefits in the new star, I ∗ and the sum of indirect benefits in the two stars,
I1 + I2. Indirect benefits inside the star S2 have not changed, and peripheral nodes of S2 have gained access to new
indirect connections. Agents in the star S1 have gained access to new indirect connections to agents in star S2. We
focus attention on the difference in aggregate indirect benefits for agents inside the star S1. New indirect connections
linking the hub of S1,m1 to all the players in S1 have been created. At the same time, the strength of an indirect
connection between two peripheral nodes i and j of S1 has been decreased from (φ(X) + φ(xi

m1
))(φ(X) + φ(x

j
m1))

to φ(X)2. The difference in indirect benefits can thus be computed as:

�I1 = 2(s1 − 1)φ(X)2 −
∑

i,j∈S1\m1

φ(X)
(
φ
(
xi
m1

) + φ
(
x

j
m1

)) −
∑

i,j∈S1\m1

φ
(
xi
m1

)
φ
(
x

j
m1

)
= 2(s1 − 1)φ(X)2 − 2(m − 2)φ(X)

∑
i∈S1\m1

φ
(
xi
m1

) −
∑

i,j∈S1\m1

φ
(
xi
m1

)
φ
(
x

j
m1

)
.

By convexity of φ,∑
φ
(
x

m1
i

)
� φ(X)
Please cite this article in press as: F. Bloch, B. Dutta, Communication networks with endogenous link strength, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.03.007

i∈S1\m1



ARTICLE IN PRESS YGAME:1507



ARTICLE IN PRESS YGAME:1507
JID:YGAME AID:1507 /FLA [m3SC+; v 1.91; Prn:7/05/2008; 11:29] P.13 (1-18)

F. Bloch, B. Dutta / Games and Economic Behavior ••• (••••) •••–••• 13
that is W
j
i = Wk

i . Hence, by reallocating investment to the link with j , agent i’s utility cannot decrease. Consider now
the utility to agent j of the connection to i:

Wj = sij

(
1 + sikW

i,k
j +

∑
m �=j,k

simW
i,m
j

)
.

Hence, the reallocation of investment will result in a utility change

�Wj = ε

(
1 +

∑
m �=j,k

simW
i,m
j + W

i,k
j (sik − sij )

)
− ε2W

i,k
j .

For ε close to zero, the change in utility is positive as sij � sik.

Next, consider an agent l such that xl
j > 0 and consider a reallocation where agent j shifts δ resources from the

link to l to the link to i. Because xi
j may be equal to zero, this reallocation may result in a utility loss for agent j .

However, this utility loss must be continuous in δ and hence, for any ε, one can find δ(ε), such that the total effect of
the reallocation of resources (δ, ε) on the utility of j is strictly positive. Now consider agent i. Since agent i could
have chosen to connect directly to agent l, the equilibrium marginal value of i’s connection to j must be at least as
large as the marginal value of a possible direct connection to l. So,

W
j
i = 1 + sjlW

j,l
i +

∑
m �=i,l

sjmW
j,m
i � W

j,l
i . (4)

Now the effect of the reallocation of resources δ on the utility of agent i is given by:

�Wi = δ

(
1 +

∑
m �=i,l

sjmW
j,m
i + W

j,l
i (sj l − sij )

)
− δ2W

j,l
i .

Using Eq. (4),

�Wi � δ(1 − sij )W
j,l
i − δ2W

j,l
i ,

which is strictly positive for δ close to zero. Hence, we have constructed a joint reallocation of resources which makes
both players i and j strictly better off.

Case 2. Suppose xi
j = X, but xi

k < X.

From the proof above, it is clear that if sij � sik , then individuals i and k can jointly plan a profitable deviation.
So, assume that sij < sik . Since xi

j = X, this means that X > xi
k > 0. Let xl

k > 0 for some l. Since i invests on k,

Wk
i � Wl

i . Similarly, since k invests on i, Wi
k � W

j
k . Suppose k transfers some resource from the link to l to the link

to i. Then, i’s total utility strictly increases since he gets the additional direct benefit, and there cannot be any loss in
indirect benefit since Wk

i � Wl
i . Moreover, k is indifferent since Wi

k = Wi
k . For an exactly analogous reason, a transfer

of resource by i from the link to j to the link to k makes k better off and leaves i indifferent. So, i and k have a
profitable joint deviation. �
Lemma 3. Let g be a connected network which is not a tree. Then,

(i) If φ is strictly convex, then g is not Nash stable.
(ii) If φ is linear, then g is not strongly pairwise stable.

Proof. Let g contain a cycle {(12), (23), . . . , (r − 1, r), (r1)}. Denote R = {1,2, . . . , r}.
(i) Since φ is strictly convex, Lemma 1 implies that all agents invest only on one link. Let Li and Li+1 be the sets of

nodes contained in N \ R which can be accessed through nodes i, (i + 1) ∈ R. Note that these must be disjoint sets—
since agents invest in only one link, there can be at most one cycle.

Let Vi be the total benefit that i gets from nodes in Li . Similarly, let Vi+1 be the total benefit that i + 1 gets from
Li+1. We first show that Vi = Vi+1.

Suppose not. Let Vi > Vi+1. Then, i − 1 is better off connecting to i + 1 rather than to i. Hence, Vi = Vi+1 ≡ V .
Please cite this article in press as: F. Bloch, B. Dutta, Communication networks with endogenous link strength, Games Econ. Behav. (2008),
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So, i gets a benefit of φ(X)k from node i + k in R and φ(X)kV from nodes in Li+k . Let B = 1 + V . Then, if r is
odd, agent i initially obtains

Ui = 2B

(r−1)/2∑
k=1

φ(X)k.

If r is even, then i obtains

Vi = 2B

(r−2)/2∑
k=1

φ(X)k + φ(X)r/2B.

Now suppose that agent i in the cycle unilaterally deviates and chooses to invest X on the link with i − 1. Then,
after the deviation, she receives

U ′
i = 2B

(r−1)∑
k=1

φ(X)k.

Hence, irrespective of whether r is odd or even, this deviation makes agent i strictly better off.

(ii) We first prove that if φ is linear and g is strongly pairwise stable, then all agents in the cycle invest on only one
link.

Suppose in contradiction that an agent i in the cycle invests on multiple links. From Lemma 2, both agents i − 1
and i + 1 must invest fully on the link with i. Let k be the smallest integer such that i − k invests both on i − k + 1
and i − k − 1. Such k must exist to complete the cycle. Then, lemma 2 requires that i − k + 1 invests fully on the link
with i − k. But, by assumption i − k + 1 invests fully on the link with i − k + 2.

Now, take any agent j in Li who is connected to i, and k ∈ Li+1 who is connected to i + 1. Lemma 2 implies that
j invests fully on the link with i and k invests fully on the link with i + 1. Repeated application of Lemma 2 implies
that all agents in Li and Li+1 in fact invest only on one link.

The rest of the proof is identical to that of (i) above.17 �
Proof of Theorem 2. From Lemma 3, we know that only trees can be Nash stable if φ is strictly convex or strongly
pairwise stable if φ is linear.

Now, consider a tree of diameter greater than or equal to 3. Let i and j be two terminal nodes at a distance greater
than or equal to 3, and let k and l be their predecessors in the tree (where k �= l as the distance between i and j is
greater than or equal to 3). Agent i could have chosen to invest his endowment on player l instead of k, so that

Wk
i � Wl

i = Wl
j + R(l, j) − R(l, i),

where the last equality results from the fact that by investing on l, agent i would have received the same marginal
value as j , but would have in addition gained a connection of length 2 to j and lost the indirect connection between
j and i. By a similar computation,

Wl
j � Wk

i + R(k, i) − R(k, j).

Summing up these inequalities, we obtain: R(l, i) + R(k, j) � R(k, i) + R(l, j), a contradiction since R(l, i) =
R(k, i)R(k, l) and R(k, j) = R(l, j)R(k, l) with R(k, l) < 1.

This shows that if g is not a collection of stars, then it cannot be Nash stable if φ is strictly convex or strongly
pairwise stable if φ is linear.

Suppose that the network contains two stars, S1 and S2, with |S1| = s1 � s2 = |S2|. If φ is strictly convex, then
from lemma 1, the hub of the star must invest fully on one link. Consider then a unilateral deviation from a pe-
ripheral agent i of S2 in which the hub does not invest. By connecting to the hub of S1, agent i obtains a payoff
V ′

i = φ(X) + (s1 − 2)φ(X)2 + 2φ(X)2 = φ(X) + s1φ(X)2 whereas she initially received a payoff of Vi = φ(X) +
(s2 − 3)φ(X)2 + 2φ(X)2 = φ(X) + (s2 − 1)φ(X)2. Since Vi < V ′

i , this shows that a network containing two or more

17 Notice that in the proof of (i) we have used strict convexity of φ only to conclude that all agents invest only on one link.
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stars cannot be Nash stable. It is easy to check that a star in which the hub invests fully on one link is Nash stable.
This concludes the proof of part (i) of the theorem.

If φ is linear, consider the peripheral agent i who receives the lowest benefit. Without loss of generality, suppose
that she belongs to star S2 and let i∗2 denote the hub of star S2 and i∗1 the hub of star S1. Consider the following

joint deviation by agents i and i∗1 : agent i connects fully to i∗1 , x
i∗1
i = X; agent i∗1 shifts away investment x

j

i∗1
from

some peripheral agent j in star S1 and invests this amount in the link to i. After this deviation, agent i∗1 ’s payoff has
increased from s1X to (s1 + 1)X and agent i’s payoff has increased from Vi to Vj + Xsii∗1 > Vi . This shows that if φ

is linear, then a strongly pairwise network must be a connected star.
Suppose now that

X <
(n − 1)2

n(n2 − 3n + 3)
. (5)

We want to show that no star can be strongly pairwise stable. Let g be any connected star with the hub being indi-
vidual 1, and suppose that i and j are the two peripheral agents with lowest utility. This implies that xi

1x1
j � ( X

n−1 )2

since the hub’s investment on i and j cannot exceed 2X/(n − 1).
Consider a joint deviation in which players i and j invest fully on the link ij . Then, the gain in direct benefit

for each of these two players is X. Each of these players loses an indirect benefit of X(X + xk
1 ) from each player

k �= 1, i, j and the indirect benefit of (X + xi
1)(X + x

j

1 ). So, the total loss in indirect benefit to player l, l = i, j is

L = X
∑

k �=1,i,j

(
X + xk

1

) + (
X + xi

1

)(
X + x

j

1

)
= (n − 1)2X2 + xi

1x
j

1

� (n − 1)2X2 + X2

(n − 1)2

< X
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To check this, note that the link sm−1 is the minimum in all comparisons, and so the sum of indirect benefits obtained
between m − 1 and other nodes is 2(m − 2)sm−1. Similarly, sm−2 is the minimum in (m − 3) comparisons and so on.

Now, consider indirect benefits in h. Note that the arc zm−1 must also be involved in at least (m − 2) comparisons
in the graph h (the minimum being attained if zm−1 connects some terminal node). Similarly, for any t , the t arcs
with the lowest values, {zm−t , . . . , zm−1} must be the minimum in at least (m − 2) + (m − 3) + · · · + (m − t − 1)

connections (the minimum being attained if they both connect to some terminal node). This establishes that the sum
of direct and indirect benefits is at least as high in S as in h.

Step 2. We now show that if the graph contains two stars S1 and S2, it is dominated by the graph where the two
stars are merged into a single star, as in the proof of Theorem 1. By merging the two stars into a single star with hub
m2, direct benefits have increased. Furthermore, indirect benefits for players in star S2 have strictly increased. For a
peripheral agent i in star S1, indirect benefits were equal to

Ii =
∑

j∈S1\m1

φ(X) + min
{
φ
(
xi
m1

)
, φ

(
x

j
m1

)}
= (m1 − 1)φ(X) +

∑
j∈S1\m1

min
{
φ
(
xi
m1

)
, φ

(
x

j
m1

)}
.

In the new star, indirect benefits are given by:

I ∗
i = (m1 + m2 − 1)φ(X).

As m2 � 1 and φ(X) �
∑

j∈S1\m1
min{φ(xi

m1
),φ(x

j
m1)}I ∗

i � Ii and indirect benefits cannot have decreased.
This concludes the proof of part (i).

(ii) Next suppose that φ is linear, and that the hub invests different amounts on its links with peripheral nodes. Let
i be a node for which xi

n is maximal, and j a node for which x
j
n is minimal. Consider a reallocation of investments,

x̃i
n = xi

n − ε, x̃
j
n = x

j
n + ε. This reallocation does not affect direct benefits. For ε small enough, it only reduces indirect

benefits between i and other players who are connected to the hub by links of maximal strength by ε. Indirect benefits
between player j and all these players have been increased by ε, and indirect benefits between players i and j have
strictly increased. Hence, this reallocation of investments has strictly increased the value of the graph, showing that
the hub must put equal weight on all links with peripheral agents.

Now, in the symmetric star, each link has strength (X + X
n−1 ). Since there are n − 1 links, each agent gets a benefit

of nX. Since this equals the total resource availa�(inw)-0.4(ing)-296.5(t)0.1(hat)]TJ
0 -1.]TJ
0 -1.]TJ
0 -1.]TJ
0 ecttŠ
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link is smaller than min{X − xi
k,X − x

j
l }, the investment in the direct link strictly increases the value of the graph,

yielding a contradiction. This completes the proof of part (i).

(ii) To show that the symmetric circle is efficient for low values of n, consider the different values of n in turn. For
n = 3, the circle is the only connected graph which is not a tree. Now, notice that direct benefits are equal to nX and
hence are maximal in the circle. For n = 4,5, we show that the circle also maximizes the value of indirect benefits.
Notice first that the value of an indirect connection is always bounded above by (X/2)2 as the middle player must
allocate X over at least two links. For n = 4 and n = 5 all indirect connections in the circle are of length 2 and have
value (X/2)2. Hence, the circle achieves the highest sum of indirect links and is efficient. It is easy to check that any
other allocation of investments results in a lower value of indirect links, so the circle with links of equal strength is
uniquely efficient.

Suppose now that n = 6,7. The indirect benefit for any node in the circle is

I = X2

2
+ X3

4
.

Consider any other graph g. If this graph is to “dominate” the cycle, then at least one node (say i∗ ) has to derive
an indirect benefit exceeding I . For each k, check that the circle maximizes indirect benefits from nodes at a distance
of k. So, if i is to derive a larger indirect benefit in g, it must have more than two nodes at a distance of 2.18

It is tedious to show that the maximum indirect benefit that i∗ can derive occurs when i∗ has two neighbors, j1, j2,
with each neighbor of i∗ having three neighbors including i∗ itself. Moreover, the optimum pattern of allocation from
the point of view of i∗ is

x
j1
i = x

j2
i = xi

j2
= xi

j2
= 1

2
.

This yields i∗ a total indirect benefit of X2

2 < I . This completes the proof of part (ii).

(iii) Finally, we show that the symmetric circle is strongly pairwise stable. In the symmetric cycle, each i gets a
direct benefit of X. No pattern of investment can result in higher direct benefits. So, we check whether a deviation by
i and j can improve their indirect benefits.

Suppose i and j are neighbors in the cycle. Consider the effect on i of increasing investment to X
2 + y by both i

and j on the link ij , and decreasing their investments on their other neighbors by y. The change in indirect benefit
for i from j ’s other neighbor is (X

2 + y)(X
2 − y) − (X

2 )2 < 0. A similar calculation shows that i also loses from nodes
which are further away.

Suppose i and j are not neighbors in the cycle. Let i and j mutually invest y each on the link ij and simultaneously
decrease investment on their previous neighbors by y

2 . It is easy to check that this is the best possible deviation.
Clearly, this can only increase indirect benefit for i if there is some k such that the distance between i and k is now

lower. This means that i accesses k through j . Let k be a neighbor of j . Then, the indirect benefit for i from k is

I = y

(
X − y

2

)
= Xy

2
− y2

2
.

Now, i has reduced the strength of links with each of its previous neighbors by y
2 . Also, since k is not at a distance

of 2 from i in the cycle, there must be some node m, distinct from k which is at a distance of 2 from i. The loss in
indirect benefit for i from m is

I ′ =
(

X − y

2

)
X

2
− X2

4
= Xy

2
.

Hence, the indirect benefit for i from k is lower than the loss in indirect benefit from m.
Repeating this argument, it can be shown that i’s total indirect benefit will actually go down as a result of the

deviation. �
18 Since n � 7, the maximum distance between any two nodes in the circle is 3.
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