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Abstract This paper analyses strategy-proof mechanisms or decision schemes
which map profiles of cardinal utility functions to lotteries over a finite set of out-
comes. We provide a new proof of Hylland’s theorem which shows that the only
strategy-proof cardinal decision scheme satisfying a weak unanimity property is
the random dictatorship. Our proof technique assumes a framework where indi-
viduals can discern utility differences only if the difference is at least some fixed
number which we call the grid size. We also prove a limit random dictatorship
result which shows that any sequence of strategy-proof and unanimous decision
schemes defined on a sequence of decreasing grid sizes approaching zero must
converge to a random dictatorship.

1 Introduction

The classic results of Gibbard (1973) and Satterthwaite (1975) have shown that
unless preferences are restricted, the only decentralized mechanism which induces
truth-telling behaviour by individual agents is the dictatorial one. This impossibility
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result has induced a huge literature which analyzes the possibility of constructing
strategy-proof mechanisms under various alternative frameworks. One variant, due
to Gibbard (1977, 1978), which is the main focus of this paper is the extension of the
original impossibility result to mechanisms which assign a probability distribution
over the set of feasible outcomes for each profile of preferences. Gibbard (1977)
characterized the class of such strategy-proof probabilistic mechanisms or decision
schemes. He showed that a strategy-proof decision scheme must be a convex com-
bination of duples and unilaterals. A duple is a mechanism which assigns positive
probability to at most two alternatives, the pair of alternatives being independent of
the profile of preferences, while a unilateral is one where the preference ordering
of a single individual dictates the social lottery over feasible alternatives.1

Such mechanisms need not satisfy even a weak form of efficiency. That is,
even if all individuals unanimously prefer an alternative a to all other alternatives,
the mechanism need not assign a probability of one to a. The only strategy-proof
mechanisms satisfying even this weak form of efficiency are random dictatorships,
in which each individual is assigned a fixed probability of being a dictator – fixed in
the sense that these probabilities are independent of the preference profile. Duggan
(1996) and Nandeibam (1998) provide alternative proofs of the random dictator-
ship result, while Dutta et al. (2002) show that the random dictatorship result holds
even if the feasible set of alternatives is some convex set in �k (with k > 1), and
preferences are strictly convex and continuous with a unique peak.2

In the original Gibbard (1977, 1978) framework, the decision scheme used
only ordinal information about individual preferences. However, Gibbard assumed
that individual preferences were represented by von Neumann-Morgenstern utility
functions since these functions were used to rank alternative probability distribu-
tions. Thus, the assumption that the decision scheme can use only ordinal informa-
tion about preferences imposed a strong invariance requirement on the aggregation
rule. In order to appreciate the strength of the invariance requirement, we point
out that strategy-proof ordinal decision schemes must satisfy a “local” property.
That is, suppose that a voter changes her preference by “switching” two contiguous
alternatives. In the ordinal context, strategy-proofness will immediately imply that
only the probabilities of the two alternatives being switched are affected. This is
a property with strong implications and considerably simplifies the task of char-
acterizing strategy-proof ordinal decision schemes. In contrast, if a strategy-proof
decision scheme utilizes cardinal information, then a change in the utility of a
single alternative for a voter could in principle, have a “global” impact, that is, the
probability of all alternatives could be affected. This makes the analysis in the
cardinal model far more difficult.

Despite this difficulty, Hylland (1980) in an important and regrettably unpub-
lished paper, showed that the random dictatorship result holds even if the decision
scheme is allowed to use cardinal information. In this paper, we have two main
objectives. First, we provide an alternative and more transparent proof of Hylland’s
theorem. Second, we consider a framework where essentially individuals cannot
discern infinitesimally small differences in utility. In particular, we assume that if an
alternative a is strictly preferred to another alternative b, then the utility difference

1 See Barberà (1978, 1979) for related characterizations of strategy-proof probabilistic mech-
anisms.

2 See also Ehlers et al. (2002).
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between a and b is at least some fixed number which we refer to as the grid size. We
construct an example to show that the random dictatorship result no longer holds
when individual utility functions satisfy this additional restriction. We then ana-
lyze the consequences of gradually reducing the grid size. That is, we consider an
arbitrary sequence of strategy-proof and unanimous decision schemes defined on
a sequence of decreasing grid sizes approaching zero. We obtain a ‘limit’ random
dictatorship result in the sense that the sequence of such decision schemes must
converge to a random dictatorship for all profiles for which the limit exists.

Recently and independently of our work, Nandeibam (2004) has provided an-
other proof of the Hylland result. We compare our proof with those of Hylland and
Nandeibam towards the end of Sect. 3.

2 The model

Let A = {a1, a2, . . . , aM } be a finite set of alternatives, with M ≥ 3. A lottery λ
is a probability distribution over the set A, and can be identified with an M-vector
whose j th component λ j denotes the probability that λ assigns to a j ∈ A. Clearly
every component of λ is non-negative and the sum of the components is 1. The set
of lotteries is denoted by L.

The set of voters will be denoted by I = {1, 2, . . . , N }. Each voter i has a pref-
erence ordering Ri over the elements of the set A. The ordering Ri is represented
by an admissible utility function ui , which is unique up to affine transformations.
We normalize utility functions by assuming that the utility of the maximal element,
which is assumed to be unique,3 is one, while the utility of the worst element is
zero. We do not require distinct alternatives to have distinct utility levels (i.e. it is
not required that Ri is a strict ordering).

Let U denote the set of admissible utility functions. We will use τ(ui ) to refer
to the maximal element of utility function ui .4

A utility profile is an N -tuple (u1, u2, . . . , uN ) ∈ U N . Let u denote the util-
ity profile (u1, . . . , uN ), and (u′

i , u−i ) denote the profile
(
u1, . . . , ui−1, u′

i , ui+1,
. . . , uN ).

Definition 1 A cardinal decision scheme (CDS) is a mapping φ: U N → L.

A CDS utilizes cardinal information in individuals’ utility functions and spec-
ifies a probability distribution over the set of alternatives for each profile of utility
functions. We let φ j (u), j = 1, 2, . . . , M denote the probability on alternative a j
in the lottery φ(u).

A CDS which only utilizes ordinal information about individual utility func-
tions will be called an ordinal decision scheme (ODS).

Two admissible utility functions ui , u′
i are ordinally equivalent if for all ak, a j ∈

A, ui (a j ) ≥ ui (ak) iff u′
i (a j ) ≥ u′

i (ak). Similarly, two utility profiles u and u′ are
ordinally equivalent if each pair ui , u′

i is ordinally equivalent.

Definition 2 An ODS is a CDS φ with the property that φ(u) = φ(u′) whenever
u and u′ are ordinally equivalent.

3 See Remark 1 in the next section.
4 In Sect. 4, we will impose an additional restriction on admissible utility functions – we will

assume that the minimal difference in utility levels of alternatives which have different utilities
is at least some η > 0.
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Different concepts of efficiency can be associated with decision schemes. One
concept which has been used is that of ex post efficiency.5

Definition 3 A CDS φ is ex post efficient if for all a j , ak ∈ A and for all admissible
utility profiles u, φk(u) = 0 if ui (a j ) > ui (ak) for all i ∈ I .

An ex post efficient CDS ensures that a Pareto non-optimal alternative is never
assigned positive probability. A considerably weaker condition is that of Unanim-
ity.

Definition 4 A CDS φ satisfies Unanimity if for all a j ∈ A and for all admissible
utility profiles u, φ j (u) = 1 if τ(ui ) = a j for all i ∈ I .

Unanimity simply requires that if an alternative is best for all individuals, then it
should be assigned probability one.

Random dictatorships are an important class of ordinal decision schemes. These
are rules in which each individual has a fixed probability (that is, independent of
the utility profile) of being a dictator. More formally,

Definition 5 The CDS is a random dictatorship if there exist non-negative real
numbers β1, β2, . . . , βN with

∑
i βi = 1 such that for all u ∈ U N and a j ∈ A,

φ j (u) =
∑

{i |τ(ui )=a j }
βi

We assume that individuals rank alternative lotteries in terms of expected utility.

Definition 6 A CDS is manipulable by an individual i ∈ I at u ∈ U N via u′
i ∈ U

if
∑M

j=1 u(a j )φ j (u′
i , u−i ) >

∑M
j=1 u(a j )φ j (u).

Definition 7 A CDS is strategy-proof (SP) if it is not manipulable by any voter at
any profile.

Thus, a CDS is strategy-proof if no voter can strictly gain in terms of expected
utility by misrepresenting her true preferences.

3 The Hylland theorem

An example of a strategy-proof decision scheme is the random dictatorship. If i
is the dictator, then the alternative which is first in i’s preference ordering is cho-
sen with probability one. Since the probability of any voter i being a dictator is
independent of the profile of preferences, it is easy to see that no individual has an
incentive to misreveal preferences.

The random dictatorship in which each individual has an equal chance of being
the dictator is obviously anonymous and efficient – the voting scheme only puts
positive weight on alternatives which are Pareto optimal. This might seem to sug-
gest that this random dictatorship provides a positive resolution of the dilemma
posed by the Gibbard–Satterthwaite result – an equal distribution of power is con-
sistent with efficiency and truthful revelation of preferences. Unfortunately, random
dictatorships possess an undesirable property, as shown in the following example.

5 See for instance Gibbard (1977), Duggan (1996), Nandeibam (1998).
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Example 1 Let |I | = 1000, and A = {a1, . . . , a1001}. Consider a profile P such
that for each individual i , ai Pi a1001 Pi a for all a ∈ A\{ai , a1001}. Although every
individual considers a1001 as the second most preferred alternative, and no two
individuals agree on what is the best alternative in A, a random dictatorship must
assign zero probability to a1001.

This example provides a motivation to search for other strategy-proof decision
schemes. Unfortunately, Hylland proved that random dictatorships constitute the
only class of unanimous and strategy-proof cardinal decision schemes. In this sec-
tion, we provide a relatively simple proof of Hylland’s theorem, which is stated
below.

Theorem 1 A CDS satisfies strategy-proofness and unanimity if and only if it is a
random dictatorship.

Proof It is clear that a random dictatorship satisfies unanimity and is also strategy-
proof. We prove the converse.

Step 1 We first show that for |N | = 2, a unanimous and strategy-proof CDS φ is
a random dictatorship.

In the proof of this step, for k, j ∈ {1, . . . , M} with k �= j and a positivea
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Proof Suppose that the claim is false. Assume w.l.o.g. that limη→0 φk(u1, uη
k j ) =

λk>λ′
k = limη→0 φk

(
v1, uη

k j

)
. Observe that Claim 1 implies that limη→0

∑
t u1(at )

φt

(
u1, uη

k j

)
= 1 − λk + u1(ak)λk and limη→0

∑
t u1(at )φt

(
v1, uη

k j

)
= 1 −

λ′
k+u1(ak)λ

′
k . Therefore limη→0

∑
t u1(at )

(
φt

(
v1, uη

k j

)
− φt

(
u1, uη

k j

))
= (1−

u1(ak))
(
λk − λ′

k

)
. But the RHS of this expression is strictly positive by assump-

tion. Therefore there exists η small enough such that
∑

t u1(at )φt (v1, uη
k j ) >

∑
t u1(at )φt (u1, uη

k j ). This implies that voter 1 can manipulate φ at (u1, uη
k j ) via

v1 which contradicts strategy-proofness of φ. �	
Let uη

jk, uη
k j ∈ U and let u2, u1 ∈ U with τ(u1) = a j and τ(u2) = ak .

Claim 3 limη→0 φ j

(
uη

jk, u2

)
= limη→0 φ j

(
u1, uη

k j

)
.

Proof Let limη1→0 φ j

(
uη1

jk, u2

)
= λ j and let limη2→0 φ j

(
u1, uη2

k j

)
= λ′

j . Accord-

ing to Claim 2, limη2→0 φ j

(
uη1

jk, uη2
k j

)
= λ′

j for all η1. Therefore

lim
η1,η2→0

φ j

(
uη1

jk, uη2
k j

)
= lim

η1→0
λ′

j = λ′
j .

But Claim 2 also implies that limη1→0 φ j

(
uη1

jk, uη2
k j

)
= λ j for all η2. Therefore

λ′
j = lim

η1,η2→0
φ j

(
uη1

jk, uη2
k j

)
= lim

η2→0
λ j = λ j

which is what we have to prove. �	
Let a j , ak, as, at ∈ A with a j �= ak and as �= at . Let u1 and v1 be admissible

utility functions such that τ(u1) = a j and τ(v1) = as .

Claim 4 limη→0 φ j

(
u1, uη

k j

)
= limη→0 φs

(
v1, uη

ts
)
.

Proof We know from Claim 2 that limη→0 φ
(

u1, uη
k j

)
does not depend on u1 as

long as the first-ranked alternative in u1 is a j . We can therefore denote this limit
w.l.o.g. as λ j ( j, k). So we have to prove that λ j ( j, k) = λs(s, t). We consider two
cases.

Case I s �= k.

We will first prove that λ j ( j, k) = λs(s, k).
Let δ, ε and γ be positive numbers and let vε

1 be an admissible utility function
with τ

(
vε

1

) = as , vε
1(a j ) = 1 − ε and vε

1(al) ≤ ε for all al �= as, a j .
Now consider voter 1 in the profile

(
vε

1, uγ

ks

)
. Her maximal expected utility from

truth-telling isφs
(
vε

1, uγ

ks

)+(1−ε)φ j
(
vε

1, uγ

ks

)+ε
(
1 − φs

(
vε

1, uγ

ks

) − φ j
(
vε

1, uγ

ks

))
.
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If she announces uδ
jk instead her minimal expected utility is φs

(
uδ

jk, uγ

ks

)
+

(1 − ε)φ j

(
uδ

jk, uγ

ks

)
). Since φ is strategy-proof, we have

φs
(
vε

1, uγ

ks

) + (1 − ε)φ j
(
vε

1, uγ

ks

) + ε
(
1 − φs

(
vε

1, uγ

ks

) − φ j
(
vε

1, uγ

ks

))

≥ φs

(
uδ

jk, uγ

ks

)
+ (1 − ε)φ j

(
uδ

jk, uγ

ks

)
.

Since the inequality above is true for all δ, ε and γ , we can take limits to obtain

lim
ε,γ,δ→0

(φs
(
vε

1, uγ

ks

) + (1 − ε)φ j
(
vε

1, uγ

ks

) + ε
(
1 − φs

(
vε

1, uγ

ks

) − φ j
(
vε

1, uγ

ks

))

≥ lim
ε,γ,δ→0

(
φs

(
uδ

jk, uγ

ks

)
+ (1 − ε)φ j

(
uδ

jk, uγ

ks

))
.

Observe that Claims 2 and 3 imply that limδ→0 φ j

(
uδ

jk, uγ

ks

)
= λ j ( j, k) and

limγ→0 φs
(
vε

1, uγ

ks

) = λs(s, k). Also, Claim 1 implies that limδ→0 φs

(
uδ

jk, uγ

ks

)
=

0 and limγ→0 φ j
(
vε

1, uγ

ks

) = 0. Therefore the inequality above reduces to

lim
ε→0

(λs(s, k) + ε(1 − λs(s, k)) ≥ lim
ε→0

(1 − ε)λ j ( j, k)

So λs(s, k) ≥ λ j ( j, k). By reversing the roles of as and a j we also have the reverse
inequality, and thus λs(s, k) = λ j ( j, k).

Define λk(s, k) := limη→0 φk
(
v1, uη

ks

)
, then by Claim 3 we have

λk(s, k) := limη→0 φk
(
uη

sk, v2
)
, where v2 ∈ U has τ(v2) = ak . By an argument

symmetric to the one in the first part of the proof Claim 4, we obtain λk(s, k) =
λt (s, t). So altogether we have

λ j ( j, k) = λs(s, k) = 1 − λk(s, k) = 1 − λt (s, t) = λs(s, t),

where the second and last equalities follow from Claim 1.

Case II s = k.

Since there are at least three alternatives, we can find ar distinct from a j and ak .
Applying Case I repeatedly, we have λ j ( j, k) = λr (r, j) = λk(k, j) = λk(k, t).

Cases I and II exhaust all possibilities and establish the claim. �	
We now summarize the implication of Claims 1 through 4. There exists a real

number λ lying between 0 and 1 with the following properties. Let a j and ak be
two arbitrary but distinct alternatives. Consider a utility profile where a j and ak are
first-ranked for voters 1 and 2, respectively. Now consider a sequence of utility pro-
files where the utility function of voter 1 is fixed but the utility function of voter 2 is
changed in a way such that ak remains first-ranked and the utility of a j is increased
to 1. Then the sequence of probabilities associated with alternative a j converges to
λ while that of ak converges to 1 − λ. Similarly, if we fix voter 2’s utility function
and consider a sequence of utility functions for voter 1 where ak increases to 1,
then the sequence of probabilities associated with a j and ak converges once again
to λ and 1 − λ, respectively.
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Claim 5 For all admissible utility profiles u and all j ∈ {1, . . . , M}, if φ j (u) > 0,
then a j ∈ {τ(u1), τ (u2)}.
Proof Suppose that the Claim is false. Assume w.l.o.g. that there exist distinct
alternatives a j , ak and as and an admissible utility profile u where a j and ak
are first-ranked by voters 1 and 2 respectively and φs(u) > 0. Let η and δ be
positive numbers and let uη

js and uδ
ks be admissible utility functions, and denote

limη,δ→0 φl(u
η
js, uδ

ks) by λ′
l for all al ∈ A. We first prove that λ′

s > 0.
In order to establish this, we start with a general observation. Let w be a

profile and at be an alternative which is not first-ranked in w1. Let v1 be an
admissible utility function with v1(at ) > w1(at ) and v1(al) = w1(al) for all
al �= at . Then φt (v1, w2) ≥ φt (w). In order to see this, observe that since
φ is strategy-proof, we must have

∑
r w1(ar )φr (w) ≥ ∑

r w1(ar )φr (v1, w2)
and

∑
r v1(ar )φr (v1, w2) ≥ ∑

r v1(ar )φr (w). Combining these two inequali-
ties we have

∑
r (v1(ar ) − w1(ar )) (φr (v1, w2) − φr (w)) ≥ 0, which implies

φt (v1, w2) ≥ φt (w). Thus if we increase the utility of an alternative for a voter in a
profile, the probability associated with that alternative cannot decline. Notice that
this observation together with our assumption that φs(u) > 0 implies that for η, δ
small enough, φs
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Combining inequalities (1) and (2) we obtain

1 ≥ 1 +
∑

l �= j,k

λ′
l .

This implies that λ′
l = 0 for each l �= j, k. This contradicts λ′

s > 0, and hence
completes the proof of Claim 5. �	

Combining Claims 1–5, we see that for any profile with unequal top alternatives
all probability is assigned to the top alternatives (Claim 5), and that agents 1 and
2 can guarantee probabilities as close to λ and 1 − λ as desired on their respective
top alternatives (Claims 1–4). Hence, φ is a random dictatorship with weights λ
and 1 − λ. This completes the proof of Step 1. �	
Step 2 We now show that a unanimous and strategy-proof CDS is a random dicta-
torship for arbitrary N
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Step 2.1 Suppose β = 0.
We want to show that for all (u1, u2), φ(u1, u2) = φ(u1, u1).

Suppose not. Then, there are u1, u2 and ak such that

φk(u1, u2) > φk(u1, u1). (3)

Now, for ε > 0, choose uε such that

τ(uε) = ak, uε(a j ) = ε for all a j �= ak .

Note that

φ(uε, uε) = φ(u1, u1) (4)

since the coalesced individual has zero weight in the random dictatorship g. From
Eqs. (3) and (4) and the specification of uε , it follows that

lim
ε→0

M∑

j=1

uε(a j )φ j (u1, u2) > lim
ε→0

M∑

j=1

uε(a j )φ j (u
ε, uε). (5)

In order to prevent individual 1 from manipulating φ at (uε, uε, u3, . . . , uN ), we
need

M∑

j=1

uε(a j )φ j
(
uε, uε

) ≥
M∑

j=1

uε(a j )φ j
(
u1, uε

)
.

In order to prevent individual 2 from manipulating φ at (u1, uε, u3, . . . , uN ), we
need

M∑

j=1

uε(a j )φ j
(
u1, uε

) ≥
M∑

j=1

uε(a j )φ j (u1, u2).

Putting these inequalities together, we need

M∑

j=1

uε(a j )φ j
(
uε, uε

) ≥
M∑

j=1

uε(a j )φ j (u1, u2). (6)

But, Eq. (5) shows that this cannot be satisfied for all values of ε, a contradiction.
Hence, in this case, φ is a random dictatorship with weights (0, 0, β3, . . . , βN ).

Step 2.2 Suppose β > 0.
Let I ′ = {3, . . . , N }. Define a function h: U2 → L as follows:

for all u1, u2, a j : h j (u1, u2) = 1

β

⎡

⎣φ j (u1, u2) −
∑

{i∈I ′|τ(ui )=a j }
βi

⎤

⎦ .

We want to show that h is a 2-person CDS satisfying strategy-proofness and una-
nimity.
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First, we show that h is a CDS. That is, h j (u1, u2) ≥ 0 for all a j ∈ A, and∑
j h j (u1, u2) = 1.
Note that

∑
j h j (u1, u2) = 1 follows from the definition of h itself. So, we

only need to show that each h j (u1, u2) is non-negative.
Consider u1, u2 such that τ(u1) = a j �= ak = τ(u2).

Claim 6 φl(u1, u2) ≥ φl(u1, u1) for all al �= a j .

Proof Suppose there is al �= a j such that φl(u1, u2) < φl(u1, u1). Choose uε such
that τ (uε) = a j , uε(ai ) ≥ 1 − ε for all ai �= a j , al , and uε(al) = 0. Then, since
φ(u1, u1) = φ(uε, uε),

lim
ε→0

M∑

i=1

uε(ai )φi (u1, u2) > lim
ε→0

M∑

i=1

uε(ai )φi
(
uε, uε

)
. (7)

But, this shows that Eq. (6) is not satisfied for some value of ε, and hence contradicts
the assumption that φ is strategy-proof. �	

Claim 6 establishes that for all l �= j , hl(u1, u2) ≥ 0. We still need to show
that h j (u1, u2) ≥ 0. But, notice that we could have “started” from u2, and proved
that φl(u1, u2) ≥ φl(u2, u2) for all l �= k. This shows that h j (u1, u2) ≥ 0.

We now want to show that h satisfies unanimity. Choose any u1, u2 such that
τ(u1) = τ(u2) = a j for some a j ∈ A. Take any ak ∈ A, and let the upper contour
set of u1 for ak be

B(k, u1) = {l ∈ {1, . . . , M} | u1(al) > u1(ak)}.
Claim 7 φ j (u1, u2) = φ j (u1, u1).

Proof Suppose there is some ak such that
∑

l∈B(k,u1)

[φl(u1, u1) − φl(u1, u2)] < 0. (8)

For small ε > 0 choose uε such that

(i) u1 and uε are ordinally equivalent.
(ii) uε(al) ≥ 1 − ε for all l ∈ B(k, u1).

(iii) uε(al) ≤ ε for all l �∈ B(k, u1).

Now, strategy-proofness of φ implies that Eq. (6) also holds for the new specifica-
tion of uε .
Noting that φ (uε, uε) = φ(u1, u1), Eqs. (8) and (6) cannot hold simultaneously
as ε → 0.

Suppose φ(u1, u1) stochastically dominates φ(u1, u2), i.e., all sums in the LHS
of (8) are non-negative and at least one sum is positive. But, note that if φ(u1, u1)
stochastically dominates φ(u1, u2), then it is well known7 that

∑

al∈A

u1(al)φl(u1, u1) >
∑

al∈A

u1(al)φl(u1, u2). (9)

7 See, for instance Quirk and Saposnik (1962).
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Noting that φ(u1, u1) = φ(u2, u2), Eq. (9) shows that 1 manipulates φ at (u1, u2)
via u2. Therefore we must have that for all k

∑

l∈B(k,u1)

φl(u1, u1) =
∑

l∈B(k,u1)

φl(u1, u2). (10)

Since a j is the maximal element in the ordering represented by u1, the conclu-
sion follows immediately. �	

Claim 7 immediately establishes that h satisfies unanimity.
We now show that h is strategy-proof. Pick any utility functions u1, u2, u′

1.
Then

M∑

j=1

u1(a j )h j (u1, u2) =
M∑

j=1

u1(a j )
1

β

⎡

⎣φ j (u1, u2, u3, . . . , uN ) −
∑

{i∈I ′|τ(ui )=a j }
βi

⎤

⎦

≥
∑

j

u1(a j )
1

β

⎡

⎣φ j
(
u′

1, u2, u3, . . . , uN
) −

∑

{i∈I ′|τ(ui )=a j }
βi

⎤

⎦

=
M∑

j=1

u1(a j )h j (u
′
1, u2).

Therefore voter 1 cannot manipulate in h. An identical argument establishes that
2 cannot manipulate h either.

Hence, h must be a random dictatorship with weights α1 and α2.
Let β1 = α1β and β2 = α2β. We want to show that φ is a random dictatorship

with weights β1, . . . , βN . Notice that we would have proved this if we can show
that the weights of the 2-agent h constructed earlier do not depend on the choice
of (u3, . . . , uN ) used in the construction of h. In fact, it is sufficient to show that
the weights do not change when (say) u3 changes to u′

3, because we can change
the profile from (u3, . . . , uN ) to (u′

3, . . . , u′
N ) by changing utility functions one at

a time.
Suppose that the weights change to α′

1 and α′
2 with α′

1 > α1 when u3 changes
to u′

3. We show that this violates strategy-proofness of φ.
First, suppose τ(u3) = τ(u′

3) = a j . Consider u1, u2 such that τ(u1) = a j
and τ(u2) = al where u3(al) = 0, that is, al is the worst element in terms of u3.
Then, it is easy to check that 3 manipulates φ at (u1, u2, u3, . . . , uN ) since there is
a probability transfer of (βα′

1 − βα1) from al to a j (with probabilities on all other
elements remaining the same) when 3 states u′

3 rather than u3. Hence, the weights
cannot change if the top elements of u3 and u′

3 are the same.
Now, suppose τ(u3) = a j and τ(u′

3) = ak �= a j . Using arguments of the
previous paragraph, we can assume that u3(ak) = 1 − ε and u3(al) = 0. Again,
assume that τ(u1) = a j and τ(u2) = al . Then,

M∑

i=1

u3(ai )
[
φi (u1, u2, u3, . . . , uN ) − φi

(
u1, u2, u′

3, . . . , uN
)] = −β

(
α′

1 − α1
) + εβ3.

This difference can be made negative by choosing ε small enough. So, φ violates
strategy-proofness.
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This concludes the proof of the induction step, and thus of Theorem 1. �	
Remark 1 Theorem 1 is a slightly weaker version of the result proved in Hylland
(1980) and Nandeibam (2004). This is because we assume that the maximal ele-
ments of admissible utility functions are unique while Hylland and Nandeibam
allow for the possiblity of multiple maximal elements. The result in that case is
that strategy-proofness and unanimity imply that the CDS is a weak random dicta-
torship. As in a random dictatorship, a weak random dictatorship is characterized
by probability weights β1, . . . , βN . At any profile u, each voter i can allocate the
weight βi amongst the alternatives which comprises her maximal set τ(ui ). The
probability associated with any alternative is then obtained by aggregating across
voters. An important observation is that not all weak random dictatorships are
strategy-proof. As we discuss below, both Hylland and Nandeibam first prove their
result on the unique maximal element domain and then extend it to the more general
domain. Their extension technique can therefore be “added on” to our arguments
to prove the more general result.

Relationship to the literature We comment briefly on the related literature. In par-
ticular, we point out the differences in our proof and that of Hylland (1980) and
Nandeibam (2004). The proofs of Nandeibam and Hylland are actually quite sim-
ilar. Both papers first show that if the domain of decision schemes is restricted
to utility profiles such that each individual has a unique maximal element, then
strategy-proofness and unanimity8 imply the existence of an additive coalitional
power structure. That is, for each set I ′ ⊆ N , one can define a number a(I ′) such
that if all members of I ′ unanimously prefer say x to all other elements while all
members of the complementary coalition unanimously prefer say y to all other
elements and if x, y are the only Pareto-optimal elements, then a(I ′) is the proba-
bility attached to x while 1 − a(I ′) is the probability attached to y. Morever, a(.)
is additive in the sense that a(I ′) = a(I1)+a(I2) if {I1, I2} is a partition of I ′, and
a(.) does not depend upon the alternatives x, y. This result is then used to obtain
a random dictatorship result on this domain. Use of the Duality Theorem of linear
programming (Hylland) or Farkas Lemma (Nandeibam) allows the extension of
the result to the domain where the multiple maximal elements are admissible.

We follow a very different approach. We assume that the minimum difference
in utility levels of alternatives which have different utilities is some positive num-
ber η > 0 where η is the grid size. We prove the theorem in two steps. First, we
consider the case of two individuals and a domain where each individual has a
unique top alternative. Using proof techniques developed by Sen (2001) to prove
the (deterministic) Gibbard-Satterthwaite result, we now consider the implications
of strategy-proofness and unanimity as the grid size η approaches zero. We show
that the two-person decision scheme must be a random dictatorship result. The
second step uses induction on the number of individuals to establish the random
dictatorship result for arbitrary numbers of individuals.

We should also mention related work of Barberà et al. (1998). This paper also
uses the same model as we do i.e. they assume that individual utility functions are
cardinal valued and that decision schemes are sensitive to cardinalizations. How-
ever, instead of assuming unanimity, it explores the consequences of imposing

8 Hylland actually does not use unanimity, but a version of Citizen’s Sovereignty.
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strategy-proofness and various smoothness conditions. Their main result is that if
decision schemes are strategy-proof and belong to the class C2, then it must be a
unilateral scheme.

4 Strategy-proofness with utility grids

Our proof technique suggests an interesting extension of the basic framework. In
particular, our proof relies heavily on the fact that we can specify utility profiles
where the utility of some alternative is arbitrarily close to 1 although it is not max-
imal. How essential is this in generating the random dictatorship result? In order
to answer this question, assume that an admissible utility function has the property
that the minimal difference in utility levels of alternatives which have different
utilities is at least some η > 0. The random dictatorship result no longer holds in
this framework. The following counter-example demonstrates that non-maximal
elements can obtain positive probability for some utility profiles.

Example 2 Let I = {1, 2}, |A| = 3. As before, the best alternative has utility 1,
the worst has utility 0, while the maximum utility that the middle alternative can
get is 1 − η.

Consider the following rule φ∗.

(i) If τ(u1) = τ(u2), then φ∗ assigns probability 1 to the unanimous top alter-
native.

(ii) If there are only two Pareto optimal alternatives at a profile, then φ∗ assigns
0.5 to each of these.

(iii) If there are three Pareto optimal alternatives at the profile u, but ui (ak) < 0.5
for some i where ak is the alternative not ranked first by either voter, then φ∗
assigns probability 0.5 to each top alternative.

(iv) Otherwise, φ∗ assigns 0.5 − d to each top alternative and 2d to the middle
alternative, where d is independent of the profile and d ≤ η/2(1 + η).

Clearly, φ∗ is unanimous. To see that φ∗ is strategy-proof, suppose the true
profile u is such that either cases (ii) or (iii) apply. Without loss of generality, let
u1(a1) > u1(a2) ≥ u1(a3). Clearly, 1 cannot increase the probability weight on
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In order to prevent this lottery from giving 1 an expected utility greater than 0.5,
we need the upper bound on d . �	

The example suggests the following related lines of inquiry. First, notice that
there is an upper bound on the probability on the middle alternative. Moreover,
this upper bound is an increasing function of the grid size. So, is it generally true
that if a CDS is strategy-proof and unanimous, then the maximum probability on
non-maximal elements is an increasing function of grid size? The question is inter-
esting because the maximum possible probability on non-maximal alternatives is
a crude measure of the distance from some random dictatorship since the latter
assigns zero probability to such alternatives.

Second, the CDS constructed in the example approaches a random dictatorship
in the limit as the grid size approaches zero. Again, it is of considerable interest
to see whether such a ‘limit’ random dictatorship result is true. We turn to these
questions in the following subsection.

4.1 A limit result

In this section, we first prove a ‘limit’ random dictatorship result, thus answering
the second question at the end of the preceding subsection. We then turn briefly to
the first question concerning the maximal probability on non-maximal elements.

For 0 < η < 1 let Uη be the set of utility functions with the property that the
minimal difference in utility levels of alternatives which have different utilities is
at least η. Consider the following situation. Let η1, η2, . . . , ηk, . . . be a decreasing
sequence of real numbers in (0, 1) converging to 0. For each k let φηk

be a strategy-

proof and unanimous CDS defined on
(
Uηk

)N
. Note that for any u ∈ U N there is

a minimal number ku such that u ∈ (Uηk
)N for all k ≥ ku . With some abuse of

notation we can therefore define

lim
k→∞ φηk

(u) = lim
k→∞, k≥ku

φηk
(u).

Obviously, this limit does not have to exist for every u. For instance, take different
recurring random dictatorships in the sequence of CDS’s. We will show, however,
that there is a random dictatorship that assigns this limit to any utility profile for
which it exists.

Theorem 2 There is a random dictatorship φ̄ such that

φ̄(u) = lim
k→∞ φηk

(u)

for all u ∈ U N for which the limit exists.

Proof For each p = 1, 2, 3, . . . let U p ⊂ U N be the set of profiles of those utility

functions that take values in the set
{

0, 1
p , 2

p , . . . ,
p−1

p , 1
}

.

(i) We first construct a subsequence of {φηk } which converges on every utility
profile in

⋃∞
p=1 U p, as follows.
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Since U 1 is finite, we can construct a subsequence of the given sequence of
CDSs which converges on every u ∈ U 1. So we have a subsequence φ1,k such that
φ1(u) ≡ limk→∞ φ1,k(u) exists for every u ∈ U 1.

We now show that φ1 is a strategy-proof and unanimous CDS on U 1. To check
unanimity, pick any u ∈ U 1 such that for some a j ∈ A, τ(ui ) = a j for all i ∈ I .
Then, for all k, φ

1,k
j (u) = 1. Hence, φ1

j (u) = limk→∞ φ
1,k
j (u) = 1.

We now check that φ1 is strategy-proof. Suppose to the contrary that φ1 is not
strategy-proof. Then, there are u ∈ U 1, i ∈ I and u′

i ∈ U 1 such that

M∑

j=1

ui (a j )φ
1
j (u

′
i , u−i ) >

M∑

j=1

ui (a j )φ
1
j (u).

But, this contradicts the fact that for each k,

M∑

j=1

ui (a j )φ
1,k
j (u′

i , u−i ) ≤
M∑

j=1

ui (a j )φ
1,k
j (u).

Next, since U 2 is finite, we may construct a subsequence of the sequence φ1,k

which converges on every u ∈ U 2. So we have a subsequence φ2,k such that
φ2(u) ≡ limk φ2,k(u) exists for every u ∈ U 2. Then, it follows from previous
arguments that φ2 is a strategy-proof and unanimous CDS on U 2. Also, by con-
struction, φ1 and φ2 coincide on U 1 ⊂ U 2.

Continuing in this way, we construct an infinite sequence φ1, φ2, . . . of CDS’s
such that each φk is a strategy-proof and unanimous CDS on U k , and coincides
with φ� on U � for each � < k.
(ii) Let u ∈ ⋃

k U k . Then u ∈ ⋂
k≥ku

U k , and therefore limk≥ku φk(u) exists, and
is in fact equal to φku (u). Denote this limit by φ̄(u). Then it follows that φ̄ is a
strategy-proof and unanimous CDS on

⋃
k U k ⊂ U N . It is not hard to verify from

our proof of Theorem 1 that this theorem still applies (the set
⋃

k U k is sufficiently
rich), and therefore φ̄ is a random dictatorship. Obviously, φ̄ is defined on all of
U N .
(iii) Let now u ∈ U N be a utility profile for which limk→∞ φηk

(u) exists. The
latter means that this limit is equal to the limit of any subsequence; therefore, we
can add the utility profile u to the set

⋃
k U k without changing the subsequences

{φ1,k}, {φ2,k}, etc. In particular, it follows that limk→∞ φηk
(u) is equal to φ̄(u). �	

Theorem 2 implies that, when applied to a fixed utility profile, the probabilities
put on non-maximal elements by a converging sequence of unanimous and strat-
egy-proof CDS’s must converge to zero as the grid size converges to zero. So this
provides a partial answer to the first question raised at the end of the preceding
subsection.

5 Conclusion

We have investigated the structure of strategy-proof, cardinal-valued decision
schemes satisfying unanimity. One of our contributions is to provide a new and
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