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[9,4] and buyer—seller networks [24,25,32]Most of these papers explicitly adopt the
network formalism, and describe the space of interactions as a graph, where the set of nodes
coincides with the set of agents, while an arc between two nodes indicates the existence of
bilateral interaction between the corresponding agents.

Thetheoretical literature on networks, starting from[2,21], emphasizes two related issues.
The firstissue is the determination of the structure of networks which will be formed if links
are established voluntarily by agents so as to maximize individual self-interest, while the
second issue is concerned with whether such endogenous networks are socially efficient.

Following [2], the typical approach has been to model network formation in a static
framework,
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aware of this occurrence. In contrast, we assume that a unilateral deviation by a player that
breaks links other than the one with her partner cannot be used as a conditioning device
by the partner. We are aware, of course, that this restriction is not entirely satisfactory—we
rule out bilateral conditioning on unilateral action—but our own attempts to deal with both
types of conditioning have led us into difficult terrain (concerning existence, even in mixed
strategies) and we have settled for the more modest advance in this paper.

We show in Theorert that a Markovian equilibrium process of network formation exists.

We use our solution concept to tackle the question of efficiency in networks. It is well
known that “stable” networks may not be efficient, and the reason for this is simple. When
a link is formed, or destroyed, the players involved do so with their own gain in mind. At
the same time, these actions also affect the payoff of other players, and so a wedge is driven
between stability and efficiency. Theorem 2 restates this in an explicitly dynamic context,
using our solution concept: there are network structures where the process will not converge
to any efficient network foanyequilibrium strategy profile. This is the dynamic counterpart
of the conflict between individual incentives and social efficiency demonstrated by [21] for
static networks.

A simple way of seeing this conflict (at least feomeequilibria) is to study network
games where link formation is always profitable in the static sense (to the pair which forms
the link). Call this propertylink monotonicity Of course, when playerisandj form an
additional link, some playek may suffer a loss in current value. This implies that the
complete network is not necessarily socially efficient. Nevertheless, Theorem 3 establishes
that there is some equilibrium at which the complete graph is reached in the limit from all
initial networks.

Yet other questions remain. For instance, how good is farsighted network formation
at resolving “weaker” efficiency issues that stem, for instance, from nonconvexities or
increasing returns? In particular, consider situations in which a “small” number of links
are costly (to those who form them), while a larger number of links is beneficial to all.
Jackson and Watts [20] observe that myopic agents cannot capture the benefits from such
situations: the process may not get off the ground if initial returns are negative. No pair of
agents may agree to form the first link if the immediate benefit is smaller than the cost, even
if subsequent benefits are exceedingly large.

At first sight, it appears that farsightedness would automatically take care of this problem.
A matched pair of agents would surely realize the future gains from linking, even if those
benefits are not to be had in the short term. Yet this behavior applied across the board cannot
constitute an equilibrium, for then a matched pair would prefgtrto form a link until
such time as a large number of links have already been built up. This would enable then
to save on the transition costs when there are a small number of links. Just because agents
are farsighted does not mean that they are impervious to short-term costs. Faced with a less
costly transition path they would surely prefer such an alternative.

Notice that these efficiency issues are not as weak as coordination failures. There is
some element of coordination, in that the efficient outcome is easy enough to sustain as
an equilibrium, provided one starts there. But there is also a genuine absence of common
interest: starting from the null network, for instance, a player would prefer that other players
take the lead in link formation before plunging in herself. These phenomena have been noted
in other contexts (see [7,1]). Fortunately, we are able to show in Theorem 4 that the complete



146 B. Dutta et al. / Journal of Economic Theory 122 (2005) 143—-164

graph (which must be socially efficient) will be the unique absorbing limit of the network
formation process for some equilibrium profile.

Of course, “static” coordination failures can arise even in our dynamic framework. We
provide a particularly stark example of this in ExamBlavhere we show that all matched
pairs may brealkll links at the complete graptven when it is the unique socially efficient
network An implication of such static coordination failures is that typically efficiency
cannot be sustained at all equilibria.

2. Valuation structures

Let | be a finite index set of players, agcan undirectedgraph onl. Such a graph, or
network, is formally just a collection df pairs, the interpretation being thaandj are
“linked”. * We use the notatiop + ij to denote the new graph obtained frgrby linking
i andj.

A componenbf a networkg is a subset of g such that na e c is linked outsidec and
such that every distindtandj in c are directly or indirectly linked® Let C(g) denote all
the components df. For eache € C(g), letI(c) denote the set of individuals

Let G denote the set of all graphs on all nonempty subselsTie complete network,
denotedg, is the graph in which all individuals are linked to one another.

Given any grapty, and component in C(g), w(c, g) is thevalueor total “worth” of
players inc. The total value ofj is

w@)= Y wi, g). (1)

ceC(g)

We will say thatw is anadditive functionif the value of any componeitis independent of

the structure of links of players not @mIn this case, we may as well use the notatia(a)
instead ofw(c, g). For such functions we also normalize by setting the value of singleton
components equal to zeroi({i}) = O for alli.

Notice that an additive functiow is a generalization of TU-characteristic functions in
cooperative game theory. However, our more general formulation allovwexternalities
across components of a graph, and so represents a generalization of partition functions
since the value of a component depends not only on the coalition structure as in partition
functions, but also ohowthe players irt are linked to each other.

LetWbe the set of all worth functions defined on allc, g) pairs, wherey is a network
andc a component of.

2.1. Allocation rules

An allocation ruleis a mappinga : G x W — R" uch that) ; _; a; (g, W) = w(g),
for all worth functionsw and graphg. The rule specifies the (one-period) payoffs to each

4 Because the graph is undirected, these links are reciprocal. For analyses of valuation structures which are
directed graphs, s¢8,11].
5Thus isolated singletons are components by definition.
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playeri for every conceivable network and worth function. We will refer to the paiw)
as avaluation structure

An allocation rule satisfiesomponent balandéfor all w € W, forall g € G, and for all
c e C(g), Ziem) a;i (g, W) = w(c, g). This restriction rules out any cross-subsidization
across links.

Throughout the paper, we will assume that the allocation rule satisfies component
balance.

An allocation rule isanonymousf it distributes payoffs that depend only on player
position in the network, and the particular worth function, and not player labels. Formally,
if 7 is a permutation of, letc™ be the appropriate transformationaifor every component
of g, and also defing™ in similar fashion. For any, definew™ by w™(c™, g™) = w(c, g).
Thenais anonymous relative t¢g, w) if for any permutatiorn, aq)(g™, W™) = a; (g, w).

Say that the rule isnonymougwithout qualification) if it is anonymous relative to every
(g, w).

One rule which is both component balanced and anonymous isdimponent-wise
egalitarianallocation rule. This rule distributes worth equally within each component of a
graph. That is, letting® denote the component-wise egalitarian rule, we have

w(c, g)
|c|

Forallie I, af(g, w)= , Wherec € C(g), i €1(c).

2.2. Efficiency

Given some valuation structure, one might consider different notions of (static) efficiency
for networks® For instance, efficiency could correspond to maximiziggregatepayoffs:
a graphg is strongly efficientf w(g) >w(g’) forall g’ € G.

A more conservative definition would allow for limited transferability, so that the con-
straints inherent in a given allocation rule are taken into account. In this spirit, agiaph
(weakly)efficientrelative to(a, w) if there is no otheg’ € G such that; (g’, w) >a; (g, w)
for all i € I with strict inequality for somg € I.

2.3. Some restrictions on valuation structures

Two specific valuation structures will play a role in what follows. First, a valuation
structure(a, w) exhibitslink monotonicityif for every networkg and alli, j € 1, a;(g +
ij,w) > ai(g, w)anda;(g+ij, w) > a;(g, w)wheneverj ¢ g.Thatis, link monotonicity
requires that an individual’s payoff is increasing in the number of her own links.

To be sure, link monotonicity allows for the possibility that an individual's payoff may
go down ifotherplayers set up bilateral links. Specifically, the complete netwonkay
not be efficient even when the network structure displays link monotonicity. The example
below shows that wheiv| = 3, the complete network may violate strong efficiency. More
complicated examples can be constructed to illustrate the possible violation of (weak)
efficiency whenN| > 4.

6 See[19].
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Example 1. Let N = {1, 2, 3}. wis additive and symmetric wittv ({ij}) = 2, w({ij, jk})
= 7/4, andw(g) = 3/2. Moreovera; ({ij},w) = a;j({ij},w) = 1, a;({ij, jk}, W) =
ar({ij, jk},w) = 1/4,a;({ij, jk},w) = 5/4,andg; (g, w) = 1/2foralll € N. Obviously,
link monotonicity is satisfied, but the complete network is inefficient.

A valuation structurda, w) displaysincreasing returns to link creatio(iRL) if

(i) w is additive andw(g) > 0 (with w({i}) normalized to O for all);

(i) wheneverc is a nonsingleton component of sog@ith w(c) >0, thenw(c) < w(c)
forall ¢’ O c;

(iiif) for componentsc as described in (ii), if € I(c) butij ¢ g, thena,(g +ij, w) >
ar(g,w) fork =1, j.

The formalities of the definition look complicated but the main idea is very simple. A
valuation structure satisfies IRL if along every nested chain of “increasingly connected”
networks, there is a threshold (nonsingleton) network for which the worth turns nonnegative,
and both aggregate payoffs as well as payoffs of individuals who form extra links then
increase as the network becomes even larger. The pointis that between the “empty network”
of singletons and the threshold(s) there may lie intermediate networks that generate negative
values.

Of course, link monotonicity and IRL are different conditions. The former applies to
all w, not just to additive functions, while the latter is restricted to the additive case. At
the same time, the latter condition only imposes link monotonicity on a subcollection of
components, not everywhere, though it also requires that aggregate worth also increase
over this subcollection. This last condition helps to guarantee that under IRL, the complete
network is the unique strongly efficient network. In contrast, we have already described an
example to show that may not be strongly efficient when the valuation structure satisfies
link monotonicity.

3. Some examples
In this section, we provide some examples that illustrate our general framework.
3.1. Connections

This model is due t¢21]. Links represent social relationships. Individuakndj are
“friends” if they are linked together, and friendship is valuable. Individuals also benefit from
indirect relationships—a “friend of a friend” brings additional benefit, which deteriorates,
however, inthe “distance” of the relationship. lmek 1 be the benefitthagets from a direct
link with j, 72 the benefit thaitgets from someone who is at a distance two, and so on. Then

ai(g.w) =Y ' —#{k : ik € gd, @)
J#
wherer (ij) is the number of links in the shortest path betweamndj, andd is the cost
per link thati has to pay for each direct link. Here, the total value of a network is simply
w(g) = X ies ai(g, w).
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The nature of strongly efficient graphs depend upon the relative valuesanfid. If
d < n — 72, then the complete graphis strongly efficient. In this case, the valuation
structure satisfies both link monotonicity as well as IRL.

A star’ encompassing all agents is the unique strongly efficient graph for intermediate
values ofd.

Ifd>mn+ (NT‘Z)nZ, then the empty graph is the unique strongly efficient graph.

3.2. Group insurance

Considem identical farmers producing random outputs. Any farmer can have a “high”
output (of one unit) with probability, or a low output (of zero units) with the remaining
probability. These probabilities are iid across farmers. Each farmer is risk-averse; with
being the common increasing, strictly concave utility function.

Any two farmers can be connected at a costloAssume that any group of connected
farmers can mutually insure each other; suppose that the insurance contract is such that
each member of the group will get an equal share of the total realized endowment net of
the costs of the links.

Let c be a connected community of farmers with cardinakitgnd overall connection
costs equal td(c). Then

k
@ =k p'l- p)"’(?)v (l _:(0))

=0

and

w(c)
k

Of course, efficiency requires that each component be minimally connected as long as
d > 0.

Notice thata; is increasing in the size of the connected component as long as the con-
nection costl is small, but for any positive connection cost must ultimately decline if the
total number of farmers is large enough.

a;j(c,w) =

3.3. Collaboration

This is due td18].8 Consider an oligopoly setting where firms form pairwise collabora-
tive links with other firms. The collaboration could involve joint research activities, sharing
knowledge about markets, sharing facilities such as distribution channels. A link between
firmsi andj yields lower costs of production for the two firms. Any collaboration network
thus induces a distribution of costs across firms. Given these costs, firms subsequently
compete on the product market as Cournot oligopolists.

"Astaris a graph with a central node to which every other node is connected, with no other links.
8 See alsd17].
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Assume that all firms have constant marginal costs of production, givenfbyfirm i.
Given a graply, let i; (g) denote the number of firms with whicHas collaboration links.
Then the resulting marginal cost of firnis

ci(g) =ci —yu;(g),

wherey > 0 is the cost reduction induced by each litik.
Suppose the inverse market demand curve is linear :

p=a—gq.
The output produced by firinin the Cournot game will be

(a —nc; +Zj7éi cj) +nyp;(g) —"/Zj;éi wi(g)
n+1

qi(g) =

and its overall profit isz; (g)2. Notice that the profit of firmi increases ifi sets up an
additional link. It follows that the valuation structure satisfies link monotonicity. On the
other hand, an additional link by two rival firnksandl reduces firm’s profit. Total industry
profit is not maximised when all firms form bilateral links, and so the valuation structure
does not satisfy IRL.

4. Process of network formation

Suppose that at any date, a pair of playieand] is randomly chosen (with uniform
probability) and endowed with the capacity to take actions at that date. Each of these players
can unilaterally sever any existing link with any other player, and they téaterally
form a link between the two of them if one doesn't exist to begin with. These actions
create a (possibly) new graph, and then one-period payoffs are received according to the
given allocation rule. The current period then ends, and the whole process beginadigain
infinitum

Thus there are two components of a strategy in force: unilateral, which involves link
severance, and bilateral, which involves link creation. Throughout, we will assume that
players follow Markov strategies; i.e., their actions will be presumed to depend only on the
existing payoff-relevant state.

Because strategies involve some elements of correlation and independence, we will need
to be more specific and careful in describing them. Suppose that two individuals “partially
cooperate”, as they do here in setting up a bilateral link, but also take independent actions,
as they do here with link destruction. Then the bilateral creation of a link betineeah)
are commonly observed by the two players, and can therefore serve as correlation devices:
either player can condition her unilateral actions on the joint decision to bring this link into
existence. In contrast, unilateral link breaking cannot be conditioned upon (at least in the
absence of an explicit sequential structure which we do not assume).

9 Assume thay is small, so that net marginal cost is always positive for each firm.
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This suggests that the situation is formally equivalent to one in which (at any date) actions
pertaining to the possible creation ofiafink are taken “first” and these are “followed” by
the unilateral actions (biyandj) pertaining to all other existing link&? Let us make this
approach more formal.

It will be useful to define grincipal stateas a collections = (g, ij), whereg is the
historically given graph ani is the chosen active pair. Define Brtermediate statas a
collections = (g, ij, {), whereg andij are as before, andis a variable which takes the
value 0 if the paiij is not linked, and the value 1iifis linked. An intermediate state doesn’t
physically exist; it is a conceptual halfway point for defining unilateral actions; hence the
choice of terminology. In contrast, a principal state physically exists at the start of a period.
When there is no need for a distinction, we shall simply use “state” to denote either of the
two varieties. Notice, too, that we use the same notatishich will also ease the writing.

For any intermediate state= (g, ij, {), defineD;(s) = {k|i andk are linked in that
statg, and likewise defin®; (s). These are the sets efistinglinkages ta andj which can
be broken unilaterally. (By assumption, no links other than those pertaining to the active
pair can be created during this period.)

Formally, then, (mixed) actions may be described as follows. At any principakstétie
active pairij it is simply a probabilityu(s) = ¢ of bilateral linkage betweehandj. At
any intermediate stagawith active paiiij it is a collectionu(s) = {v;, v;}, where for each
k =i, j, v is a probability measure defined over all subsets (including the empty subsets)
of Dy (s).** We will let u stand for the entire profile qi(s)’s over all states (notice that
u(s) has a different interpretation depending on what sort of state we are looking at), and
refer tou as astrategy profile

A strategy profile precipitates—for each statgrincipal or intermediate—some prob-
ability measurel; over the feasible sdf (s) of future networks starting frora (We omit
the tedious but entirely routine formulae that link thés to the underlying profileu.) In
particular, a Markov process is induced on the Sef principal states: at any principal
states, A; describes the movement to a new network, and the given random choice of active
players moves the system to a new active pair.

The process creates values for each player. Assuming that'there vN-M payoffs, we
can write—for every state with active pairij—the overall payoff to any persdn(under
the strategy profilgr) as the unigue solution to the functional equation

Vits, =Y s@)la(@) + 8 Y ali' i) Vals', wl,

g'eF(s) i'j!

whered; € (0, 1) is the discount factor of ageht/; is the probability oveF (s) associated
with u, 7(i’ j') is the probability that a pair j” will be active “tomorrow”, and’ stands for
the principal statég’, i’ j'). (Note thatV} is well-defined on both principal and intermediate
states.)

10The phrases that suggest chronology are deliberately in quotes because no real chronology is implied.

11As a matter of notation, we should also index the individuaomponents bys, but this is notationally
cumbersome and hopefully the context will prevent any confusion.
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Finally, at the risk of minor notational abuse, we will find it convenient toWgg, u) to
denote the (expected) payoffkat a given networky, beforethe active pair at that network
is selected. This is given by simply taking expectations over the choice of active pair:

2
Vg = o D Vel i) .

(n

ijelxI

4.1. Equilibrium

Loosely speaking, aaquilibrium process of network formati@a strategy profil@ with
the property that there is no active pair at any ssatdich can benefit—either unilaterally
or bilaterally—by departing fromu(s). The benefit is evaluated according to the value
function introduced abov@ he remainder of this section contains a precise formulation of
this idea. Before the formalities are introduced, however, note the following points:

(1) Profitable deviations aretnecessarily myopic: individuals take the ongoing process
as given and evaluate the entire stream of consequences arising from a single action. One
can imitate perfectly myopic behavior by taking the discount factor to zero, and perfect
farsightedness by taking the opposite limit.

(2) Network formation and payoffs occur together. There is no “waiting” in the model
until some “stable” network is formed, following which payoffs are assigned. Indeed, our
definition permits cycles and continued flux in the network, and there is no difficulty at all
in evaluating overall payoffs.

Now for a precise account. Fix some ongoing strategy prpfdad an intermediate state
swith active pailij. A unilateral movdor i ats(to be sometimes referred to asiamilateral
move ats when it's necessary to keep track of the relevant agent) is simply a collection
W (s) = {vi,v;}. That is, theith component ofi(s) has (possibly) been altered fromto
vi. Given a principal state, a bilateral movefor the active paifj is simply a probability
W (s) of ij-linkage.

A strategy profileu “perturbed” by an unilateral or bilateral movesis still a strategy
profile. We will occasionally use the notatighto denote the new profile (the context will
make clear exactly which move is generatjriy

For an intermediate stasavith active paiij, and for somé = i, j, say that &-unilateral
move/(s) is profitableif

Vi(s, ) > Vi(s, w), ©))
where i’ is the strategy profile “induced” by thleunilateral movey/(s) (see previous
paragraph). Likewise, for a principal statavith active pairij, say that a bilateral move
W (s) is profitableif

Vi(s, @) > Vi(s, ) andVj(s, u') > V;(s, p), (4)

where, againy’ is the strategy profile “induced” from by the bilateral move/(s). A
strategy profileu is anequilibriumif at nosis a unilateral or bilateral move profitable.
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Notice how our description of equilibrium subsumes a “perfection” requirement. An
equilibrium must be immune @l profitable moves, including those starting from principal
or intermediate states that may never be reactfed.

4.2. Existence
One can establish the following.
Theorem 1. An equilibrium in mixed bilateral and unilateral strategies always exists

Proof. For every state look at the spacé/ (s) of all possibleu(s). LetU = [, U(s).
(Note: with the obvious product topologly, is viewable as a compact, convex subset of
some finite-dimensional Euclidean space.) For eaakie construct a nonempty-valued,
convex-valued uhc corresponderiEe from U to U (s) in the following way.

Fix someu € U, and consider any state If sis an intermediate state with active
pair ij, maximize—for eachk € {ij}—the value ofV,(s, u') over all ' induced from
p by k-unilateral moves as. Gather all the (mixedk-unilateral movesy, that achieve
this maximum. Beue k
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that the{ij} pair is active? And if they do, can they condition their actions on the formation
of the{i;} link? Might some of these individuals be aware of these matters, and others not?

Fortunately, our equilibrium concept is robust enough to accommodate these alterations,
though in the interest of focus we do not pursue the variants in this paper. For instance,
consider the scenario in which third parties are free to sever links (in addition to the active
pair), and they know the identity of the active pair. Because no commitment is assumed,
suppose that third parties must move simultaneously against one another (and against the
active pair). Formally, this amounts to having the third parties move girtheipal state,
while the members of the active pair continue to move in the intermediate stage (with
effective knowledge of their own bilateral actions).

It is easy to see that the existence argument goes through with only minor changes.

The same is also true when there are several pairs of active players, provided that different
pairs do not have players in common.

Potential problems might arise when active pairs “intersect”, especially if several pairs
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5.1. Possibility of inefficiency

In order to demonstrate that the issue of sustaining efficiency in this framework is not
a trivial proposition, we show that there are valuation structures in windabquilibrium
strategy profile yields paths that are absorbed solely into a set of efficient networks. This can
be viewed as the dynamic counterpart of the conflict between (static) stability and efficiency
demonstrated bf21]. To show this, say that an allocation rydermits limited transferg
a; (g, w)<w(g) for all i whenevemw(g) >0.

An allocation rule which permits limited transfers does not allow other individuals to
“overcompensate” any individual.

Suppose the allocation rule is anonymous and satisfies Limited Transfers. We construct
below a (symmetric) worth function on three players such that the efficient network is not
strongly absorbing at any pure strategy equilibrium. The worth function is such that the
complete graph has a value,3vhile each one-link graph has value. 2ll other graphs
have value 0. Then, the complete graph is the unique efficient network. Given the restrictions
on the allocation rule, each player getg the complete graph forms, while playarand
j also getx if they form the one-link grapli;j}. Then, once a graptij} has formedj and
j have no incentive to move towards the complete graph since their pay¢ff§ and the
complete graph are identicalnd there will be some intermediate stages where they get
zero. The proof below shows that the possibility of “coordination failures” does not cause
the process to converge to the complete gragngequilibrium.

Theorem 2. Suppose thaa is anonymous and permits limited transfers. Then there is
andd < 1 such that for alld € (0, 1) every pure strategy equilibrium profile generates
paths that fail to exit the set of inefficient netwarks

Proof. LetI = {1, 2, 3}. Choose symmetric additiwg such thatw({i}) = 0, w({ij}) =
20, w({ij, ik, jk
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(F2) requires that bothandj move away from{ij} when they meek. This is true for the

following reasonSomeplayer must move away frorfij} since the complete network is

strongly absorbing. Suppose onlgither forms the one link networik} or the two link
network{i j, ik} when the current network {¢;}. Then,’s payoff must be zero in all periods

when the two-link networks are in place. (There mussbmeperiods when the two-link

networks are in place since the process converges to the complete network by assumption.)
However, ifi remains afij}—which he can do by a unilateral devido by a unilateral devido by zc,
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Then,
Vi({13},12) = o+ oV1({12}),

where

oV
a n 1(8)

ill2h) = 3=+ 3725

Suppose 1 deviates fropt at the principal staté{13}, 12), by retaining the link with 3
and refusing to form the link with 2. Denoting the resulting discounted payoffé’by

V1(({13},12) = o+ 6V{({13}).

But

20 0 20 oo
+ V1({13,23}) = 325 + @ 26219

Vitli3) = 355 + 3755

> V1({12)).

Hence,u* cannot be an equilibrium in this case.

Case2(b): Supposél13} —12 {12 13} and {13} — 23 {23}

In this case, 3 has a profitable unilateral deviatiot{&8}, 23)-3 can retain link with 1
and refuse to form link with 2.

Case2(c): Supposdl13} —12 {12} and {13} — 23 {23}.

Then,

V3({13}, 23) = o + 6V3({23}).

Also,
Va((23) = =2+~ V(1323 + — > Va((12)
3 T3-5 13- 3_5 3\
0
V3({12}) = 35 + 35 Va({23}) + mvs({lz, 13}).
Using the fact thav’3({12, 13}) = V3({13,23}) = (3_23% and simplifying,
Va(23) = — 2 + —°_vy13 23
3 T3_20  3_20 2
Hence,
30— oo 52
V3({13}, 23) = 325 + 32 V3({13, 23}).

Now, suppose 3 deviates at thrdermediatestate so that after forming a link with 2, 3
retains the link with 1. Then,

V4({13}, 23) = 6V3({13, 23)).
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Hence,

306 30— oo

V3({13}, 23) — V3({13}, 23 = G297 325

This is positive ford large enough.

Also, note that 2 is better off forming the link with 3 rather than remainind a}, even
if 3 refuses to cut the link with 1. Hencg? cannot be an equilibrium in this case either.

Using (F2), this exhausts all possible cases, and so establishes the theorém.

Notice that the complete graph may be absorbingpateequilibrium. However, if the
process of network formation “starts” at the empty network, then the complete graph
will never be reached at any equilibrium—only one-link graphs will form. So, this ex-
ample illustrates the importance of efficient graphs being sustained as strongly absorbing
graphs.

At first sight, this type of failure to sustain an efficient network may appear similar to that
arising in strictly superadditive (transferable utility) games with empty cores. Here too, the
grand coalition may not form since some subset may do better on its own. However, this
argument implicitly presumes that the members of the blocking coalition agree to “leave
the game” and form a sub-society of their own. In other words, members of the blocking
coalition assume that there is some commitment device which “binds” them together. In
contrast, the current framework assumes very limited cooperation amongst individuals. So,
when the networki j} forms, bothi andj may anticipate that the other will form a link with
k. Even though this does not bring any additional benefit to eitbef, these anticipations
can in principle sustain each other. The theorem essentially demonstrates that this cannot
happen in the specific example used in the proof.

5.2. Absorption into the complete graph

In this subsection, we both simplify and extend the logic of inefficient outcomes. The
simplification is that we select the equilibrium in question (Theogeapplied to all equi-
libria). But we extend the argument in the sense that we provide a set of conditions (not
just an example) under which the complete network is strongly absorbing (for some equi-
librium). Note that this says nothing about 