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Introduction

 RBC theory: technology expansionary.

 Gali (AER 1999) and Basu et al. (AER 2006): technology
contractionary for It & Nt.

 Two implications: (i) technology shocks not main driving
force; (ii) sticky prices.

 "the RBC theory is dead" (Francis and Ramey, JME 2005).



 It is possible that technology shocks not important and prices
sticky.

 However, the finding of Gali and Basu et al. does not
logically imply these are indeed the case.

 (i) the sign of the initial impulse responses to technology
shocks does not imply lack of procyclicality.

 (ii) contractionary effect of technology shocks does not
necessarily reject flexible prices – the main ficus of our
paper.



 In what follows, we first present empirical regularities that
appear to be profoundly inconsistent with flexible prices.
Then we show that this is not the case.
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Figure 2. Sectorial Response to Agg. Tech. Shock
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Figure 3. Response of Real Wage and Real Rate.

 Y
K  r,1 −  Y

N  w.



Figure 4. Distribution of Correlations
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Fig 5. Sectorial Response to Sector-Specific



 Why tech shock contractionary and asymmetric?

 Our approach: Leontief technology at the firm level, with
firm entry and exit. Prices fully flexible.

 Our model provides micro foundation to aggregate
production functions, and is identical to a standard
frictionless RBC model in aggregate dynamics if no
time-to-build.

 However, with time-to-biuld, our model is able to explain all
of the aforementioned empirical facts.



Benchmark Model

Final Good (y)
 Identical producers i ∈ 0,t, each producing one unit of

final good. (Imagine a production assembly line with fixed
production capacity.)

 Entry cost  . Prob of exist  t. Zero profit  total
number of producers t.

 Production function: y  x. Normalization: py  1.



 Demand for input:

x 
1 if px ≤ 1

0 if px  1
.

 Profit:

 

1 − px if px ≤ 1

0 if px  1
.

 Aggregate supply of output: Y  
0


ydi  , aggregate

demand for input is 
i0


xdi  .



Intermediate Good:
(flour)                                             

Final Good: 
(pizza)                                      

Aggregate Output:
(# of pizzas)                                                   
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Figure 6. Production Structure.



 The value of a firm (with time-to-build):
Vt  Et t1 t1

 Et∑
j1



 j1 
i1

j

1 − ti  tj1 tj1,



Vt  Et t1 t1  1 − t1Vt1.

 Free entry  Vt  .

 Evolution of :
t1  1 − tt  st,

where s  new entrants.



Intermediate good
 Infinitely many identical intermediate good producers, with

production function:
Xt  AtKt

Nt
1−.

 Profit maximization gives

px
X
K  rt  ,

1 − px
X
N  wt.

 Perfect competition  price equals marginal cost:

px  1
A

r  


 w
1 − 

1−
.

 One representative firm → aggregate supply of intermediate
good is X.



Household

 Net profit income (from final good producers):

t  
i0


 tdi − st.

 Utility maximization:

maxE0∑
t0



 tlogCt   log1 − Nt,

s.t.
Ct  Kt1  wtNt  1  rtKt  t.



General equilibrium
  Et t1 t1  1 − t1,     1

t1  1 − tt  st,     2

 t  1 − pxt,     3

pxt
Yt
Kt

 rt  , 1 − pxt
Yt
Nt

 wt     4

wtCt
−1  1 − Nt−1,     5

Ct
−1  EtCt1

−1 1  rt1.     6

Ct  Kt1 − 1 − Kt  st  AtKt
aNt

1−,     7



Equivalence to standard RBC model

 Suppose   1 and no time-to-build.

 Then Vt   t  . Hence pxt  1 −  and st  t.

 The aggregate resource constraint becomes
Ct  Kt1 − 1 − Kt  1 − AtKt

Nt
1−.

 The dynamics of this model are the same as those implied by
a standard frictionless RBC model (e.g., King, Plosser and
Rebelo, 1988).



Impulse responses
 Calibration.   0.96,  0.4,  0.1, N̄  0.2 (about 35

hours per week). Let   0.1. The results are not sensitive to
these parameter values.

 Assume logt   log t. In the U.S. (1949-1996), 1%
increase in  reduces the business failure rate by 6%, hence
we set   −6.

 The average business failure rate (at annual frequency) for
the U.S. economy implies ̄ ≈ 0.1. We simulate the model
using two alternative values, ̄  0.1,0.25. These values
imply a steady-state markup in the range of 1.5  4%.







Multisector Model
 The production function:

y  
j0

1
xjdj.

where the price of xj is pj.

 The demand for xj:

xj 

aj if pj ≤ 1

0 if pj  1
,

where 〈aj is the input-output coefficient matrix.



 The production function for intermediate good j:
Xj  AZjFKj,Nj.

Intermediate Goods:                                            

Final Good: 
(computer)                                      

Aggregate Output:
(# of computers)                                                
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Figure 9. Multi-Sector Model.

 The gross profit for a final good producer is
  y − 

0

1
ajpjdj.



 The rest of the model’s structure is similar:

Vt  Et t1 t1  1 − t1Vt1, t1  1 − tt  st,
y  

j0

1
ajdj  1, Yt   i0

t ydi  t,   
i0


di − s,

Ct  Kt1  wtNt  1  rtKt  t, where K  
0

1
Kjdj and

N  
0

1
Njdj. The first order conditions for the household are

the same as before.

 Profit maximization for each intermediate good firm in sector
j gives pj

Xj

Kj
 r   and 1 − pj

Xj

Nj
 w. → Marginal cost

of good j:

pj  1
AZj

r  


 w
1 − 

1−
.



 The aggregate output

Y  
i0

 
j0

1
ajdj di  

j0

1
ajdj,

where aj  Xj is the aggregate demand for intermediate
good j.

 Hence, Xj

Xi
 aj

ai , ZjKj
aj  ZiKi

ai and ZjNj
aj  ZiNi

ai .

 → Kj  
0

1 ai
Zi

di aj

Zj
K, Nj  

0

1 ai
Zi

di aj

Zj
N. Take the

normalization, 
0

1 ai
Zi

di  1, we have



Kj 
aj
Zj

K,

Nj 
aj
Zj

N.

 Substituting Kj and Nj into Xj  AZjKj
Nj

1− gives

Xj  ajAKN1−.

 In equilibrium the final good production function becomes

Y  
j0

1
ajdj  

j0

1
Xjdj  AKN1−.



Impulse responses
 Impulse responses of aggregate variables, such as

Y,C, I,N, to aggregate technology shocks are the same as
before.

 Impulse responses of sectors to aggregate and sector-specific
technology shocks:

Kj 
aj
Zj

K,

Nj 
aj
Zj

N.

Xj  ajY.
 Equivalence to standard RBC model: Yes, if   1 and no

time to build.



Explaining Heterogeneity
 Although our model is broadly consistent with stylized facts,

it lacks the ability to explain heterogeneous responses across
sectors.

 Consider final good firms are heterogenous because each
firm i gets a different draw of aj. Namely, firm i can
transform one unit of intermediate good j into ai, j units of
final good. → Input-output matrix  ai, j i∈0,,j∈0,1.

 The production function:

yi  
0

1
ai, jIi, jdj,

where Ii, j  1 if ai, j ≥ pj and Ii, j  0 if ai, j  pj.





Impulse responses to sector-specific
technology shocks.
 Around the steady state the percentage change of factor

demand with respect to Zj are given by

K̂j   j − 1Ẑj,

N̂j   j − 1Ẑj;

 Hence, allowing for heterogeneity in fja can explain the
heterogenous responses of inputs across sectors. This has
little effects on the impulse responses of the model to
aggregate technology shocks.



Responses to Demand.



Discussion
 A micro level rigidity in factor-demand does not by itself

imply any aggregate rigidities, as long as  is variable.

 Example 1:

yi   ai,jIi, jdi,

where ai,j  Pareto distribution Fa  1 −  1
a



yi  aik  bin,
where k is capital, n is labor, and ai,bi  Pareto
distribution.

 Let the demand functions be
k   if ai ≥ r, otherwise k  0;

n   if bi ≥ w, otherwise n  0;
where r,w stand for prices of capital and labor.

 If   1 and no time-to-build, we obtain

Y  A  1
 K −1

   1
 L −1



−1 .



 Example 3: If the Pareto distribution is replaced by the
Uniform distribution, then

Y  
0

1
Xjdj − 

2

1
2 

0

1
Xj

2dj
1
2
.

 Example 4: Define production function

yi  
0

1
hai,jIi, jdj,

where h is a truncated linear function satisfying

ha 
a if a ≤ amax

amax if a  amax

,where amax ∈ 1, is an

arbitrary truncation point.



 Under Pareto distribution (  1, we have

Y  1  amax

exp exp 
0

1
logXjdj ,

which is the Cobb-Douglas function with continuum of
inputs.

 A special case:
yi  haik  hbin.

We have

Y  B̃K

 L


 .




