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Abstract

This paper provides a simple theoretical framework for assessing the empirical linkages
between returns and realized and implied volatilities. First, we show that whereas the volatility
feedback effect as measured by the sign of the correlation between contemporaneous return
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1. Introduction

Following the realization in the late 1980s that financial market volatility is both
time-varying and predictable, empirical investigations into the temporal linkages
between aggregate stock market volatility and returns have figured very prominently
in the literature. Of course, volatility per se is not directly observable, and several
different volatility proxies have been employed in empirically assessing the linkages,
including (i) model-based procedures that explicitly parameterize the volatility
process as an ARCH or stochastic volatility model, (ii) direct market-based realized
volatilities constructed by the summation of intra-period higher-frequency squared
returns, and (iii) forward looking market-based implied volatilities inferred from
options prices (see Andersen et al., 2004, for further discussion of the various
volatility concepts and procedures). Meanwhile, a cursory read of the burgeoning
volatility literature reveals a perplexing set of results, with the sign and the size of the
reported volatility-return relationships differing significantly across competing
studies and procedures.

Building on the popular Heston (1993) one-factor stochastic volatility model, the
present paper provides a simple theoretical framework for reconciling these
conflicting empirical findings. Specifically, by postulating a parametric volatility
model for the dynamic dependencies in the underlying returns, we show how the sign
and the magnitude of the linear relationships between (i) the contemporaneous
returns and the market-based volatilities, which we refer to as the volatility feedback
effect, (ii) the lagged returns and the current market-based volatilities, which we refer
to as the leverage effect, and (iii) the two different market-based volatilities, which
we refer to as the implied volatility forecasting bias, all depend importantly on the
parameters of the underlying structural model and the stochastic volatility risk
premium.

The classical Intertemporal CAPM (ICAPM) model of Merton (1980) implies that
the excess return on the aggregate market portfolio should be positively and directly
proportionally related to the volatility of the market (see also Pindyck, 1984). This
volatility feedback effect also underlies the ARCH-M model originally developed by
Engle et al. (1987). However, empirical applications of the ARCH-M, and related
stochastic volatility models, have met with mixed success. Some studies (see e.g.,
French et al., 1987; Chou, 1988; Campbell and Hentschel, 1992; Bali and Peng, 2003;
Guo and Whitelaw, 2003; Ghysels et al., 2004) have reported consistently positive
and significant estimates of the risk premium, while others (see, e.g., Campbell, 1987;
Turner et al., 1989; Breen et al., 1989; Chou et al., 1992; Glosten et al., 1993; Lettau
and Ludvigson, 2004) document negative values, unstable signs, or otherwise
insignificant estimates. Moreover, the contemporaneous risk-return tradeoff appears
sensitive to the use of ARCH as opposed to stochastic volatility formulations
(Koopman and Uspensky, 2002), the length of the return horizon (Harrison and
Zhang, 1999), along with the instruments and conditioning information used in
empirically estimating the relationship (Harvey, 2001; Brandt and Kang, 2004). As
we show below, these conflicting results are not necessarily inconsistent with the
basic ICAPM model, in that the risk-return tradeoff relationship depends
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importantly on the particular volatility measure employed in the empirical
investigations.*

The so-called leverage effect, which predicts a negative correlation between current
returns and future volatilities, was first discussed by Black (1976) and Christie
(1982). The effect (and the name) may (in part) be attributed to a chain of events
according to which a negative return causes an increase in the debt-to-equity ratio, in
turn resulting in an increase in the future volatility of the return to equity.? Empirical
evidence along these lines generally confirms that aggregate market volatility
responds asymmetrically to negative and positive returns, but the economic
magnitude is often small and not always statistically significant (e.g., Schwert,
1990; Nelson, 1991; Gallant et al., 1992; Glosten et al., 1993; Engle and Ng, 1993;
Duffee, 1995; Bekaert and Wu, 2000). Moreover, the evidence tends to be weaker for
individual stocks (e.g., Tauchen et al., 1996; Andersen et al., 2001). Importantly, the
magnitude also depends on the volatility proxy employed in the estimation, with
options implied volatilities generally exhibiting much more pronounced asymmetry
(e.g., Bates, 2000; Wu and Xiao, 2002; Eraker, 2004).

A closely related issue concerns the bias in options implied volatilities as forecasts
of the corresponding future realized volatilities. An extensive literature has
documented that the market-based expectations embedded in options prices
generally exceed the realized volatilities resulting in positive intercepts and slope
coefficients less than unity in regression-based unbiasedness tests (see, e.g., Canina
and Figlewski, 1993; Christensen and Prabhala, 1998; Day and Lewis, 1992; Fleming
et al., 1995; Fleming, 1998; Lamoureux and Lastrapes, 1993, along with the recent
survey in Poon and Granger, 2003). As formally shown in the recent studies by
Chernov (2002), Pan (2002), and Bates (2003), this bias is intimately related to the
market price of volatility risk, and some of our theoretical results in regards to the
implied volatility forecasting bias parallel the developments in these concurrent
studies.

Our theoretical results are based on the one-factor continuous-time stochastic
volatility model popularized by Heston (1993), which explicitly assumes that the
stochastic volatility premium is linear. This in turn allows us to utilize various closed
form expressions for the conditional moments previously derived by Andersen et al.
(2004) and Bollerslev and Zhou (2002). Although the exact relationship and

"More general multi-factor models further complicate the risk-return tradeoff relationship, as the
projection of the returns on the volatility must control for the influence of other state variables. Hence, in
this situation the equilibrium correlation between risk and return may be non-linear and even negative (see
e.g., Abel, 1988; Tauchen and Hussey, 1991; Backus and Gregory, 1993; Scruggs, 1998; Lettau and
Ludvigson, 2004; Christoffersen and Diebold, 2003; Guo and Whitelaw, 2003). Tauchen (2004), within a
general equilibrium context, has also recently called into question the interpretation of the standard
ARCH-M specification as a model for the volatility risk premium, arguing instead that the effect
represents a time-varying risk premium on consumption (endowment) risk.

2Note, the volatility feedback effect, along with the well-documented persistent volatility dynamics, also
implies an observationally equivalent negative correlation between current returns and future volatility, as
a shock to the volatility will require an immediate return adjustment to compensate for the increased
future risk. We follow the convention in the literature of referring to the negative correlation between
future volatility and current returns as a leverage effect.
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implication derived in this paper may not hold for other more complicated
model structures, the basic idea could in principle be generalized to cases of
multiple volatility factors and jumps and/or non-linear volatility premia,
albeit at the expense of considerable notational and computational complexity
(see e.g., Andersen et al., 2002; Eraker et al., 2003; Chernov et al., 2003).
Interestingly however, the theoretical results for the relatively simple one-factor
affine Heston model turn out to be rich enough to explain the apparent
conflicting empirical findings in regards to the monthly return-volatility regressions
for the S&P500 aggregate market index and corresponding realized and implied
volatilities.

The plan for the rest of the paper is as follows. Section 2 starts out by a discussion
of the basic model structure, followed by the theoretical predictions related to the
volatility feedback effect, the leverage effect, and the implied volatility forecasting
bias, respectively. Section 3 provides confirmatory empirical evidence based on a
thirteen-year sample of monthly returns, and high-frequency-based realized and
implied volatilities for the Standard & Poor’s composite index. Section 4 concludes.
All of the derivations are given in a technical Appendix.

2. Theoretical model structure

Let p, denote the time-t logarithmic price of the risky asset, or portfolio. The one-
factor continuous-time affine stochastic volatility model of Heston (1993) then
postulates the following dynamics for the instantaneous returns,

dp, = (u+ 4V dt + /V dBy,
dV[ = K(Q — V[) dt + o Vt th,
corr(dBy, dWy) = p, 1)

where the latent stochastic volatility, Vy, is assumed to follow a square-root process.
Empirical model estimates generally point to a negative instantaneous correlation
between the two separate Brownian motions driving the price and volatility
processes, or p<0. This feature is sometimes referred to as a (model-based)
‘“‘continuous-time” leverage effect. Similarly, the underlying ‘‘continuous-time”
volatility feedback effect is captured directly by the risk-return trade-off
parameter, 1s>0.2

Given this dynamic specification for the underlying price-volatility process,
standard pricing arguments imply the existence of the following equivalent

31t is important to stress the difference between the “continuous-time’ volatility feedback effect, or risk-
return trade-off, 2;>0, and the “empirical” volatility feedback effect, or risk-return trade-off, as defined
by the slope coefficient in a regression of the discrete-time returns on an observable volatility proxy.
Similarly, the notion of a “continuous-time™ leverage asymmetry effect, or p <0, formally differs from the
“empirical’”’ leverage asymmetry effect defined by the sample correlation between lagged discrete-time
returns and a current volatility proxy. It is the implications of the continuous-time model in (1) for these
latter “‘empirical” measures that is the focus of the present analysis.
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Martingale measure, or “‘risk-neutralized” distribution,

dp, = (rf —dydt+ +/VdB;,
th = K*(Q* — Vt) dt + o/ thW*,
corr(dB},dW;) = p, (2)

where dy refers to the dividend payout rate and ri denotes the risk-neutral interest
rate. The value of any contingent claim written on the underlying asset is now readily
evaluated by calculating the expected payoff in this risk-neutral distribution.* We
will refer to this expectation by the superscript *, as in E*(-). The values of the risk-
neutral parameters in (2) are directly related to the parameters of the actual price
process in Eq. (1) by the functional relationships, k* = k + 4, and 0" = x0/(c + ).
The A, parameter refers to the stochastic volatility risk premium, which is generally
estimated to be negative. Hence, the degree of mean reversion for the risk-neutralized
volatility process, as determined by «*, is therefore slower (possibly even explosive)
than the mean reversion for the actual volatility, as determined by x (for a more
detailed discussion of the connection between the objective and the risk-neutral
distributions, see also Benzoni, 2001; Wu, 2001; Chernov, 2002; Pan, 2002).

We next turn to our discussion of the corresponding model-based implications
for the different return-volatility regressions, starting with the volatility feedback
effect.

2.1. Volatility feedback effect

Empirical assessments of the relationship between returns and contemporaneous
volatility have typically found the volatility feedback effect to be statistically
insignificant, and sometimes even negative. These results may appear at odds with
the ICAPM and the corresponding one-factor model in Eq. (1). Thus, as discussed in
the introduction, several studies have resorted to more complicated multi-factor
representations as a way to resolve this apparent empirical puzzle (see, e.g.nBcruggs,
1998; Guo and Whitelaw, 2003, and the discussion therein).

Meanwhile, consider the continuously compounded returns from time t to t + 4
implied by the simple model in (1),

t+4 t+4

Rutia = Peys — Py = pd + xs/t Vudu+ \ vV, dB,. ?3)
Although the ““residual” defined by ftt“' 'V, dBy is heteroskedastic, the population
regression of the returns on a constant and the integrated volatility would correctly
uncover the volatility feedback effect (13>0), provided that the orthogonality
condition E(ftt“' JV,dBy x tt“' V, du) = 0 holds true. However, with a non-zero
instantaneous ‘‘leverage’” coefficient, or p<0, the residual and the integrated

volatility will be correlated, resulting in a biased estimate for /.

“Notice, that in the presence of stochastic volatility it is generally not possible to perfectly hedge
contingent claims payoff, and options are therefore no longer redundant assets.
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Specifically, consider the population regression,

t4+4
Ritys = 0+ ﬁ/ Vydu+egiiq. 4)
t

Then as formally shown below, unless p = 0, the population feedback coefficient
will differ from the true feedback coefficient 1s. Of course, the integrated volatility is
not directly observable, so the sample counterpart to the population regression in (4)
is not actually feasible. However, the integrated volatility may in theory be
approximated arbitrarily well by the corresponding realized volatility constructed by
the summation of sufficiently finely sampled high-frequency squared returns (see,
e.g., Andersen et al., 2004). This approach, which is now routinely employed in the
literature, also underlies our empirical analysis in Section 3 below.
Alternatively, consider the corresponding implied volatility-return regression,

t44
Ritra = o + fEf (/ Vy du) + €ltiar ®)
t

where the risk neutral expectation is taken under the distribution in (2). In this
situation, unless the stochastic volatility risk-premium equals zero, or A, = 0, the
population feedback coefficient will again differ from the true feedback coefficient in
Eqg. (3), that is * +# As. Hence, to correctly uncover the volatility feedback parameter
from a contemporaneous return-volatility type regression, either the underlying
leverage coefficient must be zero if the regression is based on a realized volatility
proxy, or the stochastic volatility risk premium must be zero when using options
implied volatilities. Of course neither case is likely to hold empirically. Proposition 1
characterizes the exact form of these biases.’

Proposition 1. Assume that the parameters in (1) and (2) adhere to the standard sign
restrictions, k>0, 0>0, >0, p<0, 4,<0, 435>0, and that u#0. The population
feedback coefficient in the integrated volatility regression in Eq.(4) is then given by

K
ﬁzis‘i_% <)\.s. (6)

Letay = (1 —e )/ and a% = (1 — e~*"4)/k*. The population feedback coefficient in
the implied volatility regression in (5) may then be expressed as
a
B = ;bs_f <Js- (7
ay
Moreover, assuming that 0< ;< — px/a, the two slope parameters are related by,

B<0<f* <2, (8)
while for 0< — pr/o<is<a’/(ay — a)px/o, we have
0<B<f*<2s. 9)

5As shown in the appendix, the population intercepts o and o* will also generally differ from the true
drift in Eq. (3), that is u4. However, we will focus our discussion on the slope coefficients which are
typically associated with the volatility feedback effect.
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The proof of the proposition is given in the technical Appendix A.

The implications of the proposition for empirical studies designed to uncover the
volatility feedback effect are immediate. First, regression-based procedures utilizing
realized volatility proxies will invariably result in a downward biased slope estimate,
with the sign and magnitude depending on the underlying structural parameters.
This, of course, is entirely consistent with the extant literature discussed above
reporting inconclusive and sometimes even negative estimates for . Only if the
underlying leverage coefficient is zero (p = 0) will the regression be unbiased for
estimating As. Second, regression estimates based on implied volatility will generally
show less of a downward bias and remain positive under all reasonable parameter
settings. However, only if the stochastic volatility risk premium equals zero (4, = 0)
will the bias completely disappear. Again, this is directly in line with the existing
literature discussed above, as well as the new empirical results reported in Section 3.1
below.

This result also helps explain why various versions of filtered volatility (obtained
by projecting on lagged historical squared and/or absolute returns) may produce less
biased or even positive  estimates. Specifically, instead of the realized return -
realized volatility trade-off regression in (4), consider the realized return - expected
volatility trade-off regression

5 t+4
Rt,t+A =a+ ﬁEt </ Vu dU) + €tts4a-
t

This regression explicitly purges the simultaneous correlation between the return and
volatility innovations, and results in unbiased coefficients in population; i.e., f = /s
and & = uA.® As such, this regression corresponds more closely to the implied return-
volatility trade-off regression in (5) that obtains by replacing the expected integrated
volatility, E¢(f;™ V du), with its risk neutral equivalent, E; ([ V, du). Of course,
the expected integrated volatility will generally depend upon the underlying
structural model, but it may be approximated empirically through the use of
instrumental variables procedures. However, as previously noted, the resulting
estimates for the risk-return trade-off relationship are often very sensitive to the
particular choice of instruments employed in the estimation, indirectly highlighting
the difficulties in accurately approximating Et(ftt“' Vdu) (see, e.g., Harvey, 2001;
Brandt and Kang, 2004). We shall return to this issue in the empirical Section 3.1
below.

At a more general level Proposition 1 clearly highlights the importance of the
volatility proxy used in the estimation of the risk-return trade-off relationship, and
as such indirectly explains the instability in the estimates reported in the extant
literature in regards to the model choice, instrument control, and return horizon.
Similar issues arise in the empirical estimation of the leverage effect, to which we
turn next.

A formal proof for this result is given in Appendix A along with the proof of Proposition 1.
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2.2. Leverage effect

Several different parametric volatility models and volatility-return regressions
have been employed in the literature for empirically assessing the leverage effect (see
e.g., the discussion in Bekaert and Wu (2000), along with the surveys of the ARCH
literature in Bollerslev et al. (1992) and Bollerslev et al. (1994)). Although most
estimates support the hypothesis that aggregate stock market volatility responds
asymmetrically to past negative and positive returns, as discussed in the
introduction, the magnitude and the statistical significance of the estimated effect
is quite sensitive to the return horizon and the particular volatility proxy employed in
the estimation.

At the most basic level, the leverage effect is generally associated with a negative
correlation between current volatility and lagged returns. To formally quantify this
correlation, consider the corresponding population regressions for the integrated
volatility,’

t+4
/ Vydu =79+ 0R¢_4t + €ttiu, (10)
t

and the option implied volatility,

t+4
e[ vade) = IR e 1y
t

where the expectation in Eq. (11) is again taken with respect to the risk-neutral
distribution. Of course, the slope parameters in the simplified asymmetry regressions
in (10) and (11) do not correspond directly to the “‘instantaneous’ leverage, or
asymmetry, parameter p determining the correlation between the two Brownian
motions in (1). However, as the following proposition makes clear, the population
regression parameters may be expressed as explicit nonlinear functions of the
underlying structural parameters in (1) and (2). These functional relationships in
turn explain the stronger asymmetry observed empirically between implied volatility
and lagged-returns.

Proposition 2. Assume that the parameters in (1) and (2) adhere to the standard sign
restrictions, x>0, >0, ¢>0, p<0, 4,<0, and As>0. Let a5 = (1 —e")/x, a' =
(1 —e 1) /k*,and ¢y = (7" + k4 — 1)/x?. The population slope parameters in (10)
and (11) may then be expressed as,

5(00? /2K)a% + pald?

0= , 12
04 + 2500((As0 /) + 2p)Cy (12)

“In the empirical section we also report the results from a longer regression in which we include the
lagged volatility along with different response coefficients for positive and negative returns.
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and
. _ Js(00? | 2K)a%as + pobatay . (13)
04 + 2560((/150‘/16) + Zp)CA
Moreover, assuming 0<As< — (2px /o) it follows that
0" <6<0, (14)
while for 0< — 2pk /o< /s,
0<d<o*. (15)

The proof of the proposition is given in Appendix B.

It is noteworthy that the ‘“‘empirical’”’ leverage coefficient, 6 or ¢*, depends
critically on both the volatility feedback parameter s (positively), as well as the
“instantaneous” leverage coefficient p (negatively). Thus, while most empirical
studies report a negative volatility asymmetry for the aggregate market portfolio
(6 <0), this may help explain the lack of statistical significance and/or the sometimes
small economic magnitude of the estimated effect. For the implied volatility
regression, the ‘“‘empirical” leverage coefficient 6* also depends directly on the
stochastic volatility risk premium A, through a¥ (magnitude). Moreover, provided
that the stochastic volatility risk premium is negative (1,<0), as it is commonly
assumed in the literature, the magnitude of the implied volatility asymmetry always
exceeds that of the integrated volatility, that is 6* <5<0.2

Similar considerations help to explain the downward bias in the implied-realized
volatility forecasting regressions, to which we now turn.

2.3. Implied volatility forecasting bias

The two previous subsections demonstrate how the use of realized or implied
volatility proxies can result in quite different population parameters in the
contemporaneous and lagged return-volatility regressions. A closely related
guestion, concerns the extent to which implied volatilities provide unbiased forecasts
of the corresponding future realized volatilities.

The most common approach employed in the literature for assessing the
forecasting bias is based on regressing the ex-post realized volatility over some time
period, say [t,t + 4], on a constant and the time t implied volatility for an option
maturing at t + 4 (for a recent survey of this extensive empirical literature see Poon
and Granger, 2003). In population,

t+4 t+4
[ vadu=oo+ 65 ( | v du) e (16)
t t

Obviously, for the implied volatility to provide unbiased forecasts, the two
projection coefficients should equal ¢, =0 and ¢, =1, respectively. Meanwhile,

8There is little empirical evidence in support of the reverse asymmetric effect, or 0<3d<6*, covered by
the second case of Proposition 2.
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most empirical studies report statistically significant biases in the direction of ¢;>0
and ¢, <1. These empirical biases have in part been explained by a standard errors-
in-variables type problem arising from the use of a finite-sample equivalent to the
population regression in (16) (Christensen and Prabhala, 1998), along with very
persistent volatility dynamics rendering standard statistical inference unreliable
(Bandi and Perron, 2004). These statistical considerations aside, if the stochastic
volatility risk premium, A,, differs from zero, the two population regression
coefficients in (16) implied by the structural model in (1) and (2) will not equal zero
and unity, respectively.

Proposition 3. Assume that the parameters in (1) and (2) adhere to the standard sign

restrictions, x>0, 6>0, >0, p<0, 4,<0, and 4s>0. The population parameters in
the regression in (16) are then given by,

ay ay

=b,——Db% and =—

470 A az A 471 az

<1, 17)

where a4 = (1 — ™) /K, a4 = (1 — e 4)/k*, by = 0(4 — a,), and b’ = 0%(4 — a*).

The proof of the proposition is given in Appendix C.

The proposition immediately explains the typical finding of a downward bias in
the estimated slope coefficient. Intuitively, for A, <0, the stochastic volatility risk
premium reduces the degree of mean reversion in the risk-neutral volatility process
relative to that of the actual volatility process («* <k), in turn resulting in the ratio
a,/a* becoming less than unity.® Thus, any estimate of ¢, should be gauged against
this population bias. Of course, the true structural model parameters, x and «*, are
generally unknown and would have to be estimated.®

The integrated variance measure entering the population regressions underlying
the results in Propositions 1-3 is, of course, not directly observable. However, as
noted above, the summation of sufficiently finely sampled high-frequency intraday
squared returns may in theory be used in approximating ft” V,du to any desired
degree of accuracy. Meanwhile, a host of market microstructure frictions invariably
invalidate the underlying semi-martingale assumption for the returns at the ultra
highest frequencies. Hence, following much of the recent literature, the results for the
monthly return-volatility regressions reported in Section 3 below are based on so-
called realized volatilities constructed from the summation of the five-minute
squared returns within each month. The next sub-section demonstrates that this
approximation does not materially affect any of the regression estimates.

Closely related results, along with a more detailed analysis of the impact of jumps, have recently been
derived in concurrent work by Chernov (2002) and Bates (2003). Alternatively, as shown by Bandi and
Perron (2001, 2004) and Comte et al. (2003), the bias in the slope coefficient in the (approximate)
relationship between the Black-Scholes implied volatility and the expected integrated volatility depends
directly on the leverage coefficient, p.

Conversely, the population return-volatility regressions in Propositions 1-3 (coupled with additional
moment restrictions along the lines of Bollerslev and Zhou, 2002) could be employed as a system of
equations in estimating the structural model parameters underlying the actual and risk-neutral dynamics
in (1) and (2).
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Table 1
Simulated benchmark model

Parameter Value
K 0.20
0 10.00
o 0.80
v —2.00
p —0.60
u 0.60
2 0.04

&

2.4. Realized volatility measurement error

To gauge the impact of the approximation error from using realized volatilities in
place of the integrated volatilities in the return-volatility regressions, we report the
results from a small scale Monte Carlo study. For comparison purposes with the
empirical results reported in the next section, each ‘‘day” is divided into 78 *‘5-
minute” intervals, corresponding to a six-and-a-half “hour” trading day. The
parameters in the simulated benchmark model (listed in Table 1) implies an
annualized return of 12%, an annualized realized volatility of 11%, along with a
19% annualized implied volatility. These particular parameter values were adapted
from the estimates for the monthly S&P500 returns and implied volatilities reported
in Bollerslev et al. (2005), and correspond fairly closely to other values reported in
the literature.

The first row in each of the three panels in Table 2, labeled “‘Integrated”,
summarizes the mean and median biases along with the root mean-square-error for
the finite sample distributions of the regression slope coefficients from the infeasible
“monthly” volatility feedback, leverage effect, and implied volatility regressions in
Egs. (4), (10), and (16), respectively, when using the (latent) integrated volatility.'*
The second row in each panel reports the same statistics for the corresponding
feasible regressions based on the realized volatilities constructed from the sum of the
squared ““‘5-minute” returns. To illustrate the impact of increasing the sample span,
we report the results with both 150 and 600 ““monthly’’ observations, corresponding
to twelve-and-a-half and fifty “‘years” of data, respectively. Comparing the two sets
of results, it is immediately evident that the measurement errors in the ““five-minute”
based realized volatilities have only negligible effects on the ‘““monthly” return-
volatility regressions.*

"The “monthly” integrated volatility is calculated by the summation of the simulated squared returns
over ““30-second’ intervals. The summary statistics are based on a total of 500 replications.

12The asymptotic theory developed by Barndorff-Nielsen and Shephard (2002, 2004) and Andersen et al.
(2005) provides a formal framework for incorporating the influence of the measurement errors more
generally.
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Table 2
Simulated monthly return-volatility regressions

True value Mean bias Median bias RMSE

T=150 T=600 T=150 T=600 T =150 T =600

Volatility feedback effect

Integrated p=-01100 —-0.0038 —0.0019 —0.0050 —0.0016  0.0652 0.0287
Realized, 5-min = -0.1100 —-0.0015 —0.0002  —0.0030 0.0000  0.0649 0.0289
Realized, 1-day = f = —0.1100 0.0809 0.0778 0.0822 0.0767  0.0997 0.0824

Leverage effect

Integrated 0 =-0.3471 0.0118 0.0077 0.0147 0.0083 0.0960 0.0456
Realized, 5-min 6 = —0.3471 0.0111 0.0080 0.0163 0.0083  0.0960 0.0459
Realized, 1-day 0 =-0.3471 0.0185 0.0124 0.0190 0.0127 0.1341 0.0648

Implied volatility forecasting bias

Integrated ¢, =0.3231 —0.0056  —0.0024 —0.0047  —0.0024  0.0131 0.0058
Realized, 5-min ¢, = 0.3231 —0.0055 —0.0023 —0.0053 —0.0022  0.0134 0.0060
Realized, 1-day ¢, = 0.3231 —0.0034  —0.0009 —0.0049 —0.0010 0.0343 0.0183

In contrast, consider the results based on “monthly” realized volatilities
constructed from the summation of the 22 *‘daily” squared returns within each
“month”, as utilized in some of the existing literature. The estimates for the volatility
feedback coefficients, in particular, now exhibit large biases (toward zero for the
specific parameter values in the simulated model). Interestingly, these biases are not
alleviated much with the longer sample. The RMSE’s are, of course, also much
larger when only “daily” returns are used in approximating the ‘“‘monthly”
integrated volatility.™®

3. Empirical illustration

Our empirical analysis is based on monthly returns and volatilities for the
S&P500 composite index spanning the period from January 1990 through
February 2002.** The monthly continuously compounded percentage returns are
constructed from the daily S&P500 closing prices supplied by Standard & Poor.
Normalizing the monthly time interval to unity, we will refer to the return over the
(t+ 1)th month as Reg4s.

130f course, if the same regressions were analyzed at the “daily” level with the realized volatilities
constructed from the “‘five-minute” intraday returns, some of these same biases would likely hold true.

14The starting date of January 1990 reflects the availability of risk neutral implied volatilities for the
S&P500 (new VIX) available from the Chicago Board of Options Exchange (CBOE) since September 22,
2003. Earlier versions of this paper relied on implied volatilities for the S&P100 (old VIX) and a starting
date of January 1986. The results are qualitatively similar and available upon request.
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As previously noted, the corresponding realized volatilities are based on the
summation of the five-minute squared returns within the month. The high-frequency
data for the S&P500 index is provided by the Institute of Financial Markets.
Specifically, with n¢,; trading days in month t + 1,

78-N¢y1
RVt = Z (109 Peyi/zeni, — 109 Pepioy78n.)% (18)
i=1

where the 78 five-minute subintervals represents the normal trading hours from 9:30
am to 4:00 pm, including the close-to-open five-minute interval. As discussed in the
previous section, the realized volatility, RV+1, is readily interpreted as a consistent
(for increasing sampling frequency), and in the present situation with roughly 22 x
78 = 1,716 five-minute returns per month, a hlghly accurate estimate of the

corresponding integrated volatility, Vi1 = ft Vs ds.

The monthly implied volatility (variance) is formally defined by,

t+1
Vi, = E* { /t Vi ds|37t], (19)

where E* refers to the risk-adjusted expectation of the one-month ahead integrated
volatility, IVit.1. Our measure for 1V, , is based on the (new) VIX index for the
S&P500 volatility provided by the CBOE. Importantly, these are model-free implied
volatilities calculated on the basis of the approach in Britten-Jones and Neuberger
(2000); see also Jiang and Tian (2004) for an alternative theoretical derivation of this
model-free options implied volatility measure along with a discussion of issues
related to its practical implementation.*®

To facilitate the theoretical derivations, all of the volatility regressions analyzed in
the previous section were cast in the form of variances corresponding to the
empirical RViey1 and 1VE,,; measures defined above. However, for robustness
reasons previous empirical studies have often been implemented in the form of
standard deviations. Hence we augment the variance regressions with the analogous
regressions based on RVt 1 and IVtti1

Summary statistics for all of the variables are reported in Table 3. For comparison
purposes the standard deviations and the variances are converted to percentage and
squared percentage points, respectively. From the first column, the average
annualized return on the market was about ten percent, with a sample standard
deviation of around fourteen percent. The returns are negatively skewed with fatter
tails than the normal distribution. The realized volatilities are systematically lower
than the implied volatilities, and their unconditional distributions also deviate less
from the normal. The returns are approximately serially uncorrelated, while the
volatility series (both in standard deviation and variance forms) exhibit pronounced
own temporal dependencies. In fact, the first ten autocorrelations reported in the
bottom part of the table are all highly significant with the gradual, but very slow,

5In contrast, the old VIX index (now labeled VXO) provided by the CBOE until September 21, 2003,
was based on index options for the S&P100, and relied on the Black-Scholes pricing formula for inverting
the options prices.
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Table 3
Summary statistics for monthly returns and volatilities

Statistics Rit41 thlﬁ-l Ivﬁfl RVits1 IV;F,Hl

Mean 0.8365 3.4289 5.6402 14.0982 35.0116
Std. Dev. 4.1449 1.5353 1.7949 13.3458 23.6188
Skewness —0.6214 1.0590 0.8805 1.9579 2.0850
Kurtosis 4.1696 3.6945 4.2386 7.0473 10.2722
Minimum —15.7586 1.3658 3.0686 1.8655 9.4164
5% Qntl. —6.0935 1.6828 3.3602 2.8319 11.2909
25% Qntl. —1.9522 2.2147 3.9881 4.9050 15.9046
50% Qntl. 1.0429 3.0027 5.6205 9.0161 31.5901
75% Qntl. 3.6992 4.2845 6.8423 18.3569 46.8177
95% Qntl. 7.1228 6.4501 8.5772 41.6279 73.5703
Maximum 10.5790 8.3521 12.7825 69.7571 163.3932
1 —0.0622 0.8019 0.8197 0.7254 0.7470
0o —0.0273 0.6641 0.6767 0.5111 0.5280
P3 —0.0208 0.5904 0.5866 0.4208 0.4231
Pa —0.0544 0.5579 0.5639 0.3872 0.4036
Ps 0.0296 0.5938 0.5770 0.4511 0.4311
Ps 0.0029 0.6120 0.5547 0.4990 0.4051
p7 0.0899 0.5804 0.5457 0.4452 0.3927
Ps 0.0124 0.5774 0.5502 0.4381 0.4109
Po 0.0956 0.5638 0.5618 0.4149 0.4323
P10 0.1203 0.5810 0.5990 0.4505 0.5108

decay suggestive of long-memory type features. This is also evident from the time
series plots for each of the five series given in Fig. 1.

3.1. Volatility feedback effect

Our estimates of the volatility feedback effect are based on the empirical
equivalents to the two population regressions in Egs. (4) and (5),

Retr1 = o + BRVity1 + Utya, (20)
Rewr = o + B IV + Uiy, (21)
along with the corresponding robust regressions in standard deviation form,
Reert = o + RV oy + g, (22)
* sy sx1/2 *
Ryt = o + BVl + U, (23)

where the residuals from the regressions are generically denoted by uy1 and ug, 4,
respectively. The coefficient estimates, along with their asymptotic standard errors
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based on a Newey-West covariance matrix estimator allowing for a two-month lag,
are reported in Table 4.° Interestingly, the two realized volatility regressions both



138 T. Bollerslev, H. Zhou / Journal of Econometrics 131 (2006) 123-150

Table 4
Volatility feedback effect

Standard deviation Variance

Realized Implied Expected Realized Implied Expected

o = 2.661 o* = —0.489 & =0.961 o = 1.700 o* = —0.001 & =0.889
(0.712) (0.914) (1.048) (0.401) (0.458) (0.395)

p = —0.532 p*=0.235 B = —0.036 f = —0.061 p* =0.023 B = —0.003
(0.239) (0.175) (0.210) (0.030) (0.012) (0.024)

R? = 0.038 R? = 0.010 R? = 0.005 R? = 0.038 R? = 0.018 R? = 0.004

Note: The “Expected” volatility regressions refer to the instrumental variables regressions using the lagged
squared returns as instruments for the realized volatilities.

result in significant estimates for the intercepts (positive) and slopes (negative). In
contrast, the implied volatility regressions produce insignificant (negative) intercepts
and marginally significant (positive) slopes. Although the empirical finding of a
significant negative relationship between aggregated stock market returns and
realized volatility may appear counter intuitive, the result is, of course, entirely
consistent with Proposition 1 and the ranking of the corresponding population
parameters, <0< f*, provided that the condition 0< 4s < — pic/a is satisfied by the
underlying structural model parameters.*’

It is worth noting, that while all of the regressions above involve a trade-off
between monthly returns and volatilities over the identical time horizon, the one-
month implied volatility is determined at time t, whereas the realized volatility is not
observable until t+ 1. As such, the results in Table 6 are also consistent with the
recent empirical findings by Brandt and Kang (2004), who report a (puzzling)
negative contemporaneous relation between the conditional mean and the
conditional variance of the market returns, along with a more conventional positive
tradeoff for the one-month lagged volatility. Similarly, Ghysels et al. (2004) report a
significant positive trade-off relationship when the squared returns 20-50 days in the
past are weighted most heavily in their realized volatility constructs.

In order to further illustrate this point, the last columns in each of the panels in
Table 4 report the results from a standard instrumental variables procedure in which
we rely on the lagged squared returns as instruments for the realized volatilities in the
two regressions in (20) and (22). Although the slope coefficient estimates for both the
standard deviation and the variance formulation remain negative, they are clearly
much closer to zero, and the regression R-squares drop from four percent to virtually
zero. Moreover, the corresponding standard errors are also much larger, and the

Recall that the positive return volatility trade-off observed in some empirical studies, 0< < §*, may
similarly be justified by the second case of Proposition 1, when the underlying structural parameters satisfy
the condition 0< — px /o <is<a¥/(as — a})pK/o.
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parameter estimates are no longer statistically significant.’® As such, these results
further highlight the sensitivity to the particular volatility proxy and instrument

choice employed in the reduced form volatility feedback regressions.
3.2. Leverage effect
The empirical equivalents to the simple leverage regressions analyzed in Section

2.2 above take the form
RVity1 =7 4+ 6Re—1t + Ugy1, (24)

IVitJrl = 'y* + 5*Rt—l,t + U;k, (25)

with the theoretical prediction from Proposition 2 that in population 6* <5 <0; i.e.,
the implied volatility is more responsive to the lagged return than the realized
volatility. Again, for robustness reasons, the asymmetry implications may
alternatively be tested in standard deviation form,

RVIZ, =7 4 0Re1c + Uraa, (26)
V2 = 7" + 0 Reoae + U, 27)

with the similar predictions in regards to the sign and ordering of the slope
coefficients. Moreover, to account for the strong own temporal dependencies in the
volatility and to allow for different impacts from past negative and positive returns,
a slightly longer asymmetry regression is often estimated empirically,

RVitr1 =7 + SRV 1t + 2(Re_10)? — d(Re_11)?l (Ri_1:<0) + Utt1, (28)

Vi =7+ BV + 2*(Re-14)” — 0" (Re—10)°l Re1:<0) T U; - (29)

In these longer regressions, weak asymmetry would again be implied by negative §’s,
while strong asymmetry would have the «’s be negative as well. Similarly, if the
implied volatility responds more asymmetrically to past returns than do the realized
volatility, we would expect to find that the estimates for the ¢’s satisfy the relation
0" <6 <0. These same considerations apply to the pair of robust standard deviation
regressions,

thl,ﬁ—l =7+ ﬁRthﬁ,t + oRe-1t] — 6IRe- 141l R <0) + Utr1, (30)
IV:i/LZl =y + ﬁ*lVﬁ/li + o |Re-1t] — 0" IRe-1t/l R_1, <0) + Uf- (31)

Note that for f = 0 and 6 = 2« the long regression in Eg. (30) collapses to the short
regression in Eq. (26). Likewise, for f* =0 and 6" = 2«* the two risk-neutral
regressions in equations (31) and (27) coincide.

8\We also experimented with a number of other instrumental variables, including the lagged raw and
absolute returns and the lagged volatilities in standard deviation and variance forms. The results (available
upon request) were qualitatively similar, but only the lagged squared returns produced positive R-squares.
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Table 5
Leverage effect

Short regression

Standard deviation Variance

Realized Implied Realized Implied

y = 3.509 y* =5.731 y = 14.916 y* = 36.373
(0.206) (0.235) (1.737) (3.076)

0 = —0.088 & = —0.118 0 =-0.901 0" = —1.749
(0.039) (0.040) (0.408) (0.651)

R? = 0.056 R? = 0.075 R? = 0.078 R? = 0.094

Long regression

Standard deviation Variance

Realized Implied Realized Implied

y = 0.693 y* = 0.864 y = 3.829 y* = 7.009
(0.192) (0.164) (1.067) (1.475)
p=0718 p*=0.782 f =0.604 p* =0.723
(0.058) (0.029) (0.066) (0.042)

o = 0.055 o* = —0.009 o = 0.059 o* = —0.085
(0.040) (0.027) (0.063) (0.053)

6 =-0.074 & = -0.308 60 =-0.102 0" = —0.551
(0.050) (0.034) (0.071) (0.054)

R? = 0.672 R? = 0.843 R? = 0.606 R? = 0.829

The actual S&P estimation results for the leverage regressions are reported in
Table 5. The intercepts and slope coefficients for the short regressions in the first
panel of the table are all highly significant. The R-squares for the realized volatility
regressions are systematically lower than the corresponding R-squares for the
implied volatilities. Importantly, the estimates of the ¢’s from the variance
regression, 6 = —1.75 and 6 = —0.90, also adhere to the theoretical predictions
from Proposition 2 of negative and more pronounced asymmetry for the implied
volatility. Similarly, the short regressions in standard deviation form results in
estimates of §* = —0.12 and 6 = —0.09, both of which are significantly less than
zero. Turning to the longer regressions, it is noteworthy that the asymmetry in the
realized volatility are no longer statistically significant, while the two estimates of 5*
from the implied volatility regressions are both overwhelmingly significant, and
economically large. Again, this is directly in line with the implications from
Proposition 2 of stronger asymmetry for the implied as opposed to the realized
volatility regressions. The well-documented strong own temporal dependencies in the
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Table 6
Implied volatility forecasting bias

Standard deviation Variance

¢o = —0.381 ¢o = —0.356
(0.248) (1.019)

¢, = 0.675 ¢, = 0412
(0.053) (0.040)

R? =0.623 R? =0.533

volatility also result in large and highly significant estimates for the f’s, along with
much higher R-squares for the long volatility regressions (0.83-0.84 for the implied
and 0.61-0.67 for the realized volatilities).

All-in-all, the at first somewhat puzzling empirical findings for the different
regressions reported in Table 5 again highlight the importance of properly
interpreting the estimated asymmetry in lieu of the theoretical implications for the
different volatility proxies detailed in Proposition 2. In this regard, the results in
Table 5 are also consistent with previous empirical evidence in the literature related
to the significance, or the lack thereof, of the volatility asymmetry effect for other
markets and time periods (see, e.g., Schwert, 1990; Nelson, 1991; Gallant et al., 1992;
Engle and Ng, 1993; Duffee, 1995; Bekaert and Wu, 2000; Wu, 2001, among others).
We next turn to discussion of the related empirical evidence concerning the
unbiasedness regressions directly linking the implied and realized volatility.

3.3. Implied volatility forecasting bias

The question of whether implied volatilities provide unbiased and informationally
efficient forecasts of the corresponding future realized volatilities have been studied
extensively in the empirical finance literature. The typical regression employed in the
literature takes the form,

RVitr1 = ¢ + ¢11Vip g + Uit (32)
or in terms of standard deviations,
1/2 1/2
RViZ) = do+ $1lVitss + Ut (33)

where unbiasedness would be associated with ¢, =0 and ¢, = 1. Of course, the
theoretical results in Proposition 3 implies that these are not the values to be
expected empirically if stochastic volatility risk is priced.*

The actual estimation results reported in Table 6 also do not support the
unbiasedness hypothesis. Both of the estimates for ¢, are significantly less than

19The existence of a non-zero stochastic volatility risk premium for explaining estimates of ¢, <1, along
the lines of Proposition 3, has previously been discussed by Benzoni (2001), Chernov (2002), Pan (2002),
and Bates (2003), among others.
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unity, and the estimates for ¢, are less than zero, albeit not significantly so. The
regression in standard deviation form results in a fairly high R-square of 0.62, while
the R-square from the less robust variance regression equals 0.53. These findings of a
downward bias in the implied volatility forecasts along with fairly high explanatory
power when judged by the high-frequence based realized volatility measures are
directly in line with recent empirical results in the literature (see, e.g., Neely, 2003;
Martens and Zeins, 2004 and the survey by Poon and Granger, 2003). Moreover, the
direction of the estimated biases are exactly as expected from Proposition 3, and as
such do not necessarily suggest any inefficiencies.

4. Conclusion

The continuous-time framework developed in this paper for assessing the linkages
between discretely observed returns and realized and implied volatilities help explain
a number of puzzling findings in the extant empirical literature. In particular, we
show that whereas the sign of the correlation between return and implied volatility is
unambiguously positive, the correlation between contemporaneous return and
realized volatility is generally undetermined. Similarly, the lagged return-volatility
asymmetry is always stronger for implied than realized volatility. Also, implied
volatilities generally provide biased forecasts of subsequent realized volatilities.

It would be interesting to extend the empirical analysis for the aggregate S&P500
index presented here to other markets. In particular, the volatility feedback and
asymmetry effects may not be as important for other markets, and consequently
result in qualitatively different return-volatility linkages. The theoretical analysis of
more complicated model structures allowing for jumps in the volatility and/or
returns along with multiple volatility factors may give rise to additional new insights.
The regression-based implications derived here could also be used in directly
estimating the underlying objective and risk-neutral dynamics, including the
stochastic volatility risk premium, by appropriately matching the sample and
population moments for the realized and implied volatilities. We leave further work
along these lines for future research.
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Appendix A. Proof of Proposition 1

To simplify the exposition, define a, = (1 —e™)/k, a = (1 —e ™) /x*, by =
0(4 —ay), b = 0%(4 —a%), and ¢4 = (67 + x4 — 1)/x?. The proof consists of
three steps.

To determine the projection coefficients in the realized volatility-return

trade-off relationship, note that from Andersen et al. (2004), the variance term
may be written as,

t+4 9 2 ) 9 2
VAR(/ Vudu) =K%(e‘“+m_1)=%c4|.
t

Similarly, the covariance term takes the form,

t+4
cov<RmA, / Vudu)
t

t+4 t+4
:cov<;m+zs/ V,du +
t

t+4
\/Vu dBu,/ Vu du)
t t
t+4 t+4 t+4
= VAR (/ Vy du) +COV< vV dBu,/ Vy du).
t t t

Rearranging and integrating by parts, the second term becomes,

t+4
Ccov (

t+4
\V Vu dBu,/ Vu dU)
t t
t+4 t+4
=E< \/VudBu/ Vudu)
t t

=E:/tt+d</tuJ\TSst>vudu+/tt+A(/tuvsds>\/v*udsu}
:E:/tw (/tu\/v75d85>vudu}

=E:/tt+A (/tu\/\Tsst> (Vt+/tux(0—vs)ds+/tua\/\75dws) du}

t+4 U
=E / —K / Vv
t t
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Notice that the recursive structure within the Riemann integral t+"( ) du must hold
over any time interval 4, so that in particular,

t+4 u t+4 u S
/ E(/ \/vsstvu> du:/ —K/ E(/ \/VderV5> dsdu
t t t t t
t+4 u
+/ (/ pa@dS)du,
t t

which gives rise to the linear first order ordinary differential equation,
dE ([, vVsdBsVy)
(e a0 (/ Vs dBgV ) + pab). (A1)

Solving this equation yields,

u t
E(/ vV dBSVu) — e—K(u—t)E(/ Vs stVt> + p;;g(l _ e—K(U—t))'
t t

(A.2)

Since the first term on the right-hand-side equals zero, completing the outside
integration operator now yields,

t+4 b
/ </ V'V dBV)du_( 4 4 kA — 1) = pabcy. (A.3)
t

Therefore,

cov(RmM, [y, du)
h= VAR (v, du) TRt A

which is less than zero provided that 0< s < — px/o, and greater than zero if 0< —
pK /o <4is. In addition, the intercept may be written as,

t+4 pK9
o = E(Rees) — ﬁE( v, du) — A+ 204 — oA = ud =P 4. (AB)
t o

The determination of the projection coefficients in the implied volatility-
return regression proceed by analogous arguments. First, the variance term
may be written as,

t+4 0.29
VAR [Ef </ v, du)] VAR,V + b)) = ——aja).
t
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Similarly, for the covariance term

t+4
cov [RLM, E; ( / Vi du)}
t

t+4 t+4
t

vV dBu,ath + bz>
t
t+4 t+4
— Ja, cov(/ Vudu,Vt> +a cov( \/VudBu,Vt)
t t

t+4
= )58 COV(ayV¢ + by, Vo) + a4 E (/ VvV dBth>
t

2

o0
= Js—ayak.
SZK AAY

Hence,

COV{ttMVudu,Ef(t”"vuduﬂ_ (020008 a,
VAR[E;‘< t‘“‘vudu)} T (20 20akay  Cay

which is less than /s but larger than zero, provided that 4, <0 and 45> 0. Also,
t+4
0" = E(Reta) — ﬂ*E[E;‘ (/ Vudu)] = ud + 204 — ¥ @50 + 0b%). (A.7)
t
Finally, combining the results above, it follows readily that if 0<As< — pk/a,
B<0<p, (A.8)
while for 0< — px/o<As<a’/(ay — a%)px/a,
0<p<p*. (A.9)

To establish unbiasedness of the realized return - expected variance regression
discussed in the main text in Section 2.1, it suffices to show that

t+4
cov |:Rt,t+As E¢ (/ Vu du):|
t

t+4 t+4
:COV(MA+/LS/ Vudu+/ \/VudBu,aAVt+bA>
t t
t+4 t+4
= XsaACOV</ Vy dU,Vt> +aACOV( vV dBu,Vt>
t t

N dBth)

t+4
= ;usaACOV(aAVt + bA,Vt) + aAE<
t

a%0
== )“S Eai



Then, utilizing the results in the first part of the proof for the implied volatility
feedback effect to evaluate the variance of the expectation, it follows that f = /5 and
o= ud.

Appendix B. Proof of Proposition 2

By definition

t
VAR (Re_41)

N c:ov( 4y, du, Rt,A,t)

The denominator may be rewritten as,

VAR(Rt_4t)
t t t t
= )2VAR (/ Vudu) + E(/ Vudu> +2flscov(/ vV, du, \/VudBu)
t—4 t—4 t—4 t—4
0 2
= 7227 ¢4 + 04 + 22spailc,

K

= 04 + J500 (’%‘7 + 2p> c

where the second equality follows from the results in Andersen et al. (2004),
Bollerslev and Zhou (2002), and Proposition 1 above. The numerator may be
expressed as,

t+4
Ccov (/ A\ dU, RtA,t)
t

t+4 t t+4 t
:@COV(/ Vudu,/ Vudu> +COV</ V,du, \/VudBu)
t t t t—4

—A4

0c?
= Xsﬁai‘ —+ pa@aﬂ,

where the first term uses the result from Andersen et al. (2004), and the second term
uses the result from the proof of Proposition 1. Combining the two equations it
follows therefore that

5 45(00? /2K)a% + pald? (B.1)
04 + As00((As0 /K) + 2p)Cy '
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The coefficient of the implied volatility asymmetry is similarly defined by,
cov [E; (i Vudu),Ria]

§* =
VAR(R_4y)

The numerator may be rewritten as,

t+4
cov [Ef </ Vy du> , RtA,t:|
t

= COV[ath + bz, Rth,t]

t t
= a%/,COV (vt, / vy du) +a’,CoV (vt, VvV dBu>
t t—4

—A

0 2
= XS%aZaA + pobalay,

where a = 1 (1 —e'4) and b}, = 0*(4 — &), and the last line of the proof utilizes
the results from the proof of Proposition 1. Now combing the different equations it
follows that

. As(00%/2K)a%as + podaray
04+ 4s60((Asa /x) + 2p)Cys

(B.3)

while the intercept in the implied volatility asymmetry regression takes the form
Y = (@50 + b)) — 0" (ud + 2s04). (B.4)
Lastly, note that the common denominator of § and 6* (corresponding to a
variance) is always positive. If 0</1s< — 2pi/o we therefore have,
0" <d<0, (B.5)

while for 0< — 2px /0 < /s,
0<d<d”. (B.6)

The assumption that 4,<0 ensures that a>a,>0. Thus the usual parameter
restrictions in the Proposition guarantees the ordering of the ¢’s.

Appendix C. Proof of Proposition 3

From the proof of Proposition 1,

5 COVL [V du, Ef (i vy du)]
1 =

VAR[E; (/7 V, du)]

* * Ak a (1 - e_’CA)K*
= (JZH/ZK)aAaA/(JZQ/ZK)aAaA = % = m <1,
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where the last inequality follows directly by the assumption that k* =k + A, <k.
Similarly, the intercept may be evaluated as

¢y = E</tt+A Vudu) - ¢1E[E§‘</tt+A Vudu)]

ay ay
— 04— (@504 b%) = by — Hp,
az(A +bj) = by a,

which can generally not be signed.
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