ORIGINAL PAPER

Lisa A. Cameron · Deborah Cobb-Clark

Do coresidency and financial transfers from the children reduce the need for elderly parents to works in developing countries?

10 M = 2005 / A (11 M = 2006 / 1 m = 2006 / 1 m = 2006 m = 3 Nr, r-r, 2006

Abstract $\mathbf{D} \rightarrow \mathbf{r} \rightarrow \mathbf{r}$ $\begin{array}{c} \mathbf{f} \left[\mathbf{F}_{\mathbf{T}} \right] = \left[\mathbf{f}_{\mathbf{T}$ is the second of

JEL Classification J226 · J22 · J14

1 Introduction

LI a mathematic providence of the providence of the state of the second se Tom Ar Ar A to raise H . I row - row the raise of the A shi I I had dealer and the Provident of the I all have stop a di a com socia 🗱 por planta da da com de 🛍

Responsible editor: J X. /

L. A. 🕢 📭

D. C. , $-G_{r}$ $\begin{array}{c} \mathbf{A}_{1} \\ \mathbf{A}_{2} \\ \mathbf{A}_{3} \\ \mathbf{A}_{3} \\ \mathbf{A}_{3} \\ \mathbf{A}_{3} \\ \mathbf{A}_{3} \\ \mathbf{A}_{4} \\ \mathbf{A}_{3} \\ \mathbf{A}$

D. C , , $-G_{r}/(\bigotimes)$ Institute for Labor Studies (IZA), Bonn, Germany Tel.: + 61-2- 612532 67, Fax: + 61-2- 61250182, E-mail: Deborah.Cobb-Clark@anu.edu.au

 $\begin{array}{c} \mathbf{u}_{\mathbf{r}} = \left[\begin{array}{c} \mathbf{u}_{\mathbf{r}} & \mathbf{u}_{\mathbf{r}} & \mathbf{r}_{\mathbf{r}} & \mathbf{u}_{\mathbf{r}} & \mathbf{u}_{\mathbf{r}} & \mathbf{u}_{\mathbf{r}} & \mathbf{u}_{\mathbf{r}} & \mathbf{r}_{\mathbf{r}} & \mathbf{u}_{\mathbf{r}} & \mathbf{r}_{\mathbf{r}} & \mathbf{u}_{\mathbf{r}} & \mathbf{u}_{\mathbf{r}} & \mathbf{r}_{\mathbf{r}} & \mathbf{u}_{\mathbf{r}} &$

A to reduce the set of the set of the reduce to the set of the se

The second states and the second s

2 Existing literature and the Indonesian context

D is a restriction of the restr

 $\begin{array}{c} M_{\Gamma} & M_{\Gamma}$

 $M_{I} = (A_{I}, A_{I}, A_{I}$

 $\begin{array}{c} \mathbf{r} & \mathbf{D} & \mathbf{A} = \mathbf{A} & \mathbf{C} & \mathbf{A} & (1994) \mathbf{P} & \mathbf{A} & \mathbf{r} & \mathbf$

The production of the back of the property of

 $[\]begin{array}{c} \mathbf{A}_{\mathbf{\Gamma}\mathbf{f}\mathbf{f}}\mathbf{f} = \left[\begin{array}{c} \mathbf{A}_{\mathbf{r}} \mathbf{f} \\ \mathbf{A}_{\mathbf{r$

For i have he products in a construction of the production of the

2.1 I. . .

I was all a state of the state of the first state of the $\mathbf{I}_{\mathcal{A}\mathcal{A}} = \mathbf{A}_{\mathcal{A}} = \mathbf{A}_{\mathcal{A}} + \mathbf{A}_{\mathcal{A}$ $\begin{array}{c} \mathbf{F}_{\mathbf{r}} & \mathbf{h} \in \mathbf{I}_{\mathbf{r}}, \\ \mathbf{f}_{\mathbf{r}} & \mathbf{f}_{\mathbf{r}} \in \mathbf{r}, \\ \mathbf{f}_{\mathbf{r}} & \mathbf{f}_{\mathbf{r}} = \mathbf{f}_{\mathbf{r}}, \\ \mathbf{f}_{\mathbf{r}} & \mathbf{f}_{\mathbf{r}} & \mathbf{f}_{\mathbf{r}} = \mathbf{f}_{\mathbf{r}}, \\ \mathbf{f}_{\mathbf{r}} & \mathbf{f}_{\mathbf{$ $\begin{array}{c} \mathbf{f}_{\mathbf{r}} \mathbf{f}_{\mathbf{r}$ $\mathbf{r} \stackrel{\mathbf{d}}{\longrightarrow} \mathbf{r} \stackrel{\mathbf{d}}$

3 The Indonesian family life survey

 $\mathbf{f}_{\mathbf{r}} = \mathbf{f}_{\mathbf{r}} \mathbf{$ $\begin{array}{c} \mathbf{r} \quad \mathbf{A}_{\Gamma} \quad 2,625 \\ \mathbf{r} \quad \mathbf{r$ $1,891 \rightarrow r$ I Mar we want the Mart I too the state of the Alast of the Alast

 $^{{}^{9}\}mathrm{I}$ / ${}_{\mathrm{T}}$ (2) ${}_{\mathrm{T}}$ (2) ${}_{\mathrm{T}}$ / ${}_{\mathrm{T}}$ / ${}_{\mathrm{T}}$ (2) ${}_{\mathrm{T}}$ / ${}_{\mathrm{T}}$ ton der an and der

 $[\]begin{array}{c} \overset{(1)}{}_{I} \stackrel{(1)}{}_{I} \stackrel{(1)}{}_{$

 $[\]begin{array}{c} \textbf{A}_{1} \textbf{A}_{1} \textbf{A}_{2} \textbf{A}_{2} \textbf{A}_{2} \textbf{A}_{1} \textbf{A}_{2} \textbf{A}_$

Aro Mr. France and a com

non nella con proposition de la decomposition de la p. 18. Draw in the deal is a difference of the second der $A_{\Gamma}A_{J}$, Γ (), A_{Γ} , J (), T (), A_{Γ} , A_{Γ} ,

IFL A I r and a string of the $\begin{array}{c} \mathbf{A} \\ \mathbf{$ $\begin{array}{c} \mathbf{r} \\ \mathbf$

IFL $A_1 = \frac{1}{r} \left[A_{12} + A_{12}$ $(\mathbf{x}_{\mathbf{r}}, \mathbf{x}_{\mathbf{r}}) = (\mathbf{x}_{\mathbf{r}}, \mathbf{x}_{\mathbf{r}}) + (\mathbf{x}_{\mathbf{r}},$ $r_{\rm T} = 20 \, d_{\rm T} \, d_{\rm T}$ - т **Г**-source of the state of the stat

i la cisi ilyaa daga a 🌮 dag 🌮 a IFL ya daa 👔 🖌 a y A so and the state of the state where we are the second of the I. 2 | 2 rd 2 1 d d d r d 3 2 d d 3 d 3 f 2 r 3 2 d r 2 d 3 1 l l r r f 2 3 2 d r 2 d r 2 d r 2 d r 2 d r 2 d r 2 d at a second the second and the secon The construction of the first design of the construction of the date $\mathbf{A}_{\mathbf{r}} = \mathbf{1}_{\mathbf{r}} \mathbf{$ with the second fraction of the second state o A_{Γ} , P_{Γ} , P_{Γ

 $[\]begin{array}{c} \stackrel{14}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{14}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{14}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{14}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{A} \ \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \textbf{I} \\ \stackrel{16}{} & \quad \text{IFL } \ \textbf{I} \\ \stackrel{16}{} & \quad \textbf{I} \\$ $\begin{array}{c} \mathbf{A}_{\Gamma} \\ \mathbf{F} \\ \mathbf{I}^{6} \\ \mathbf{I} \\ \mathbf$

L , <i>I</i> _{II} <i>I</i> , (<i>N</i> =2,625)	E, r, (%)
Len in Arthering	62.51
$\mathbf{L}_{1} = \mathbf{L}_{1} = $	7.60
$\mathbf{\Gamma} \rightarrow \mathbf{\Gamma} \rightarrow $	9.02
Lucitor and the second	13.67
L	7.03

 $\begin{array}{c} (., v, v,) \stackrel{!}{ = } \quad (., v,) \stackrel{!}{ = }$

			Μ		
	Cr.		C _r ,		
	N		N		
M	217.2	160.0	186.2	185.4	
гатист на т	70.2	52.9	66.6	48.9	
$\mathbf{M}\boldsymbol{\mathcal{A}} = \frac{1}{\mathbf{\Gamma}} \mathbf{\mathcal{F}} = \frac{1}{\mathbf{\Gamma}} / \mathbf{M} \boldsymbol{\mathcal{A}} = \frac{1}{\mathbf{\Gamma}} \mathbf{\mathcal{F}} = \frac{1}{\mathbf{\Gamma}} \mathbf{\mathcal{F}} $ (%)	35.6	6.8	28.2	9.9	
$\mathbf{M}\mathbf{A} = \mathbf{f} \mathbf{f} \mathbf{f} \mathbf{M} \mathbf{A} + \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h}$	115.5	34.9	33.8	16.9	
r r r r r r r r r r	55.6	39.0	83.4	72.0	
$M \mathbf{A} = \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A}$	17.6	13.4	34.0	30.3	
M4,, 1,, 1,, >0	31.6	34.4	40.1	42.1	

Table 2 $\mathbf{r} \neq \mathbf{r} \neq$

Fig. 1 $\mathcal{U}_{\mathcal{I}_{\mathbf{r}}}$ (1) $\mathcal{U}_{\mathbf{r}}$ (1) \mathcal{U}_{\mathbf

 $\begin{array}{c} \mathbf{r} & \mathbf$

4 The empirical framework

 $\begin{array}{c} \mathbf{r} & (\mathbf{r} + \mathbf{r}) = \mathbf{r} + \mathbf{r} +$

4.1

 $\begin{array}{c} \mathbf{E} \left[\mathbf{f} \mathbf{a} \right] = \left\{ \mathbf{f} \mathbf{a} \right\} =$

$$LS_i^p = \max\left(\beta_{0n} + \beta_{1n}Z_i^p + \gamma_{1n}TR_i + \varepsilon_{1i}, 0\right) \quad if \ C_i = 0 \tag{1}$$

$$LS_{i}^{p} = \max\left(\beta_{0n} + \beta_{1r}Z_{i}^{p} + \beta_{2r}Z_{i}^{CC} + \gamma_{1r}TR_{i} + \varepsilon_{2i}, 0\right) \quad if \ C_{i} = 1,$$
(2)

 $\sum_{\mathbf{r}} \mathbf{E} \cdot \mathbf{1} \mathbf{A}_{\mathbf{r}} \cdot \mathbf{2} \mathbf{A}_{\mathbf{r}} \cdot \mathbf{A}_{\mathbf{r}} \cdot \mathbf{r} \cdot \mathbf{$ $\begin{array}{c} \mathbf{A}_{\mathbf{I}} \\ \mathbf{A}_{\mathbf{$ $\begin{array}{c} \mathbf{T}_{\mathbf{r}} = \mathbf{T}_{\mathbf{r$ $\begin{array}{c} \mathcal{A}_{\Gamma} = \mathcal{A}_{V} = \left[\mathcal{B}_{\Gamma} \right]_{\Gamma} = \left[\mathcal{A}_{V} \right]_{\Gamma} = \left[\mathcal{A}_{V} \right]_{\Gamma} = \left[\mathcal{A}_{\Gamma} \right]_{\Gamma} =$

$$TR_{i} = \max\left(\pi_{on} + \pi_{in}Z_{i}^{NC} + \pi_{2n}Z_{i}^{P} + u_{1i}, 0\right) \quad if \ C_{i} = 0 \tag{3}$$

$$TR_i = \max\left(\pi_{or} + \pi_{ir}Z_i^{NC} + \pi_{2r}Z_i^P + \pi_{3r}Z_i^{CC} + u_{2i}, 0\right) \quad if \ C_i = 1,$$
(4)

1 WI & The rest of the rest of the Ard, rest the rest of the rest

 $[\]frac{1^{17}C}{4^{17}} + \frac{1}{16} + \frac{1}{16}$

 $\begin{array}{c} (1,1) = (1,1)$

$$C_i^* = \eta_0 + \eta_1 Z_i^P + \eta_2 Z_i^C + \eta_3 H_i + \nu_i$$
(5)

$$Ci = 1 \text{ if } C_i^* > 0 = 0 \text{ if } C_i^* < 0$$
(6)

 $\begin{array}{c} \mathbf{r} \quad \mathbf{i} \quad \mathbf$

¹⁹ ¹⁹ ¹⁹ ¹⁹ ¹⁹ ¹⁹ ¹⁹ ¹⁰ ¹⁹ ¹⁹ ¹⁰ ¹⁰

4.3 L 📌 🖌 🚛

 $\mathbf{r} = \mathbf{r} \cdot \mathbf{r} \cdot$

4.4 E 🔐 🖌 🛺

$\langle \nu_i \rangle$		0	1	σ_{vu}	$\sigma_{v\varepsilon}$
$\begin{pmatrix} \nu_i \\ u_i \end{pmatrix}$	~N	0,		σ_u^2	$\sigma_{u\varepsilon}$,
$\left(\varepsilon_{i}\right)$		0 / 0			σ_{ε}^2

5 The effect of coresidency and transfers on labour supply

 $[\]frac{21}{r_{1}} \left[\frac{1}{r_{1}} \left[\frac{1}{r_{2}} \left[\frac{1}{r_{1}} \left[\frac{1}{r_{2}} \left[\frac{1}{r_{1}} \left[\frac{1}{r_{2}} \left[\frac{1$

5.1 · M. Tr Tray # I ... M. M.

 $\begin{array}{c} \mathbf{A}_{1} \mathbf{A}_{1} \mathbf{F}_{1} \mathbf{F}$

 $\begin{array}{c} {}^{23}\mathrm{I}_{-1} \times \mathcal{A}_{1} & \mathcal{A}_{2} & \mathcal{A}_{2} \times \mathcal{A}_{3} \times \mathcal{A}_{3} \times \mathcal{A}_{3} \times \mathcal{A}_{3} & \mathcal{A}_{3} \times \mathcal{A}_{3} \times \mathcal{A}_{3} & \mathcal{A}_{1} \times \mathcal{A}_{2} \times \mathcal{A}_{1} & \mathcal{A}_{2} \times \mathcal{A}_{1} \times \mathcal{A}_{2} \times \mathcal{A}_{1} \times \mathcal{A}_{2} \times \mathcal{A}_{2} \times \mathcal{A}_{3} \times \mathcal{A}_{1} \times \mathcal{A}_{2} \times \mathcal{A}_{2} \times \mathcal{A}_{3} \times \mathcal{A}_{2} \times \mathcal{A}_{3} \times \mathcal{A}_{$

	Сŗ,		N r	12	Cr.		N r	17	
						M (N=407)		M (N=302)	
	(<i>N</i> =418)	(N=302))					
(000 c) 1 - 1 - 1 - 1	-0.001	-0.19	-0.017	-1.94	-0.007	-0.80	-0.042	-0.54	
· · · ·	1.592	1.47	0.733	0.26	0.024	0.02	9.365	0.49	
(000,000)									
A (000,000)	-0.002	-0.08	-0.005	-0.06	0.043	1.13	-4.722	-0.62	
Ar Ar Art ar									
Α	-0.653	-3.35	-0.447	-1.69	-1.413	-5.47	-1.468	-6.73	
E t I and									
	0.520	0.26	2.309	0.79	-4.046	-1.22	-5.065	-1.81	
	4.481	0.96	-17.962	-2.32	-8.175	-1.38	-11.950	-2.14	
M/rr,	3.083	1.86	-1.306	-0.48	5.683	1.06	7.656	1.65	
	-6.748	-2.32	-13.560	-2.62	-20.819	-3.48	-6.074	-1.08	
T ¹	-0.216	-0.12	5.866	1.93	5.307	1.70	0.889	0.29	

Table 3 D, $r \mid A$, $p \mid A$, $p \mid A$, $p \mid A$, $r \mid A$, $r \mid P \mid A$, $r \mid P \mid A$, $r \mid P \mid A$, $r \mid A$, $p \mid A$, $r \mid A$, $p \mid A$, $r \mid A$

 $\begin{array}{c} \mathbf{r}_{\mathbf{r}} \mathbf{h}_{\mathbf{r}} & \mathbf{h}_{\mathbf{r}$

6 The interdependencies between various forms of old-age support

 $I = r_{1}^{d} (r, 0) = r_{1}^{d} (h + 0) = r$

$6.1 C_{\Gamma}$

 $\begin{array}{c} \mathbf{I} \quad \mathbf{I} \quad \mathbf{J} \quad \mathbf{$

 $[\]frac{2^{5} \mathrm{E}_{\Gamma}}{\mathrm{e}_{\Gamma}} = \frac{1}{4} \left[\begin{array}{c} \mathbf{A}_{\Gamma} \\ \mathbf{A}_{\Gamma$

 $[\]begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$

 $[\]frac{2^{2}}{2} = \left[\frac{2^{2}}{2} + \frac{2^{2}}{2}$

 $\begin{array}{c} \mathbf{r} \\ \mathbf$ $(A_{\mathbf{II}}, A_{\mathbf{I}}) = (A_{\mathbf{I}}, A_{\mathbf{I}}$ en le relation de la construction de la constructio $\begin{array}{c} \mathbf{A} \\ \mathbf{A} \\ \mathbf{r} \\ \mathbf{A} \\ \mathbf{r} \\ \mathbf{A} \\ \mathbf{s} \\ \mathbf{$

it does dy dit of depidy dit de the plan de de de state in the dece of the dec $\mathbf{F} = \mathbf{A} + \mathbf{A} +$ $\begin{array}{c} \mathbf{A} \quad \mathbf{r}^{\mathbf{A}} \quad \mathbf{\rho} \quad \mathbf{r}^{\mathbf{A}} \quad \mathbf{r}^{\mathbf{A$ $\begin{array}{c} \mathbf{T} \\ \mathbf$ single states and the states of the second states o \mathcal{A}_{Γ} , \mathcal{M}_{Γ} , $\mathcal{M$ Fritzen and A. I. S. A. T. S. Commence there and the second some das stren potential and the of the first states $\begin{array}{c} \mathbf{M} \\ \mathbf{M} \\ \mathbf{F} \\ \mathbf$

a fair de her a fair is realist for the realist for the realist I and I Free of I de la dans a dans I have a

I wrd stor a well and the second of the seco The second product of the day of the second $((1, 1, 1), 1) \neq \frac{1}{r} = \frac{1}{r}$ A water a description of the draw with the draw with the draw of t The shelp and the start of the shere is the shere the shere the start of the shere the

proprious detailed and a section of and a section of

 $[\]begin{array}{c} 2^{20} \\ 2^{29} \\ 1^{2$ $\begin{array}{c} \mathbf{f} & \mathbf$

 $[\]begin{array}{c} \overset{\mathbf{r}}{}_{30} \overset{\mathbf{r}}{}_{1} & \overset{\mathbf{r}}$

	(N=720))	M (<i>N</i> =709)	
	M _r , , , , ,	t A a a	M ₁ , , , , ,	t A a a
4 r · · · · ·				
(000,000)	-0.096	-3.71	-0.022	-1.16
A (000,000)	-0.001	-1.91	0.001	1.39
Ar ' Ard . r				
A	-0.011	-3.41	-0.001	-0.16
M/III)	-0.067	-1.57	-0.005	-0.08
$\mathbf{D} \mathbf{\hat{A}} \rightarrow \mathbf{\hat{A}}$	0.083	1.24	-0.046	-0.50
r Ar and	-0.029	-0.58	-0.018	-0.42
Ar / rodr at day	-0.074	-0.72	0.008	0.09
T T4 ,	-0.083	-1.73	-0.028	-0.54
r r r r				
# //	-0.068	-1.57	-0.140	-2.17
G	0.037	0.21	-0.109	-1.04
F ¹ A ,	-0.100	-1.40	-0.084	-1.14
M/III,	-0.002	-0.17	0.016	1.53
N . / m, /	0.150	6.45	0.177	8.69
Ar and an	0.037	2.61	0.003	0.20
r of r of a	-0.023	-0.93	-0.054	-2.16
$\mathbf{L} \mathbf{A}_{\mathbf{r}}$				
A \mathbf{r}^{4} (000,000)	0.036	1.73	0.080	3.80

Table 4 $(\mathbf{r}_{\mathbf{r}}, \mathbf{r}_{\mathbf{r}}, \mathbf{r}, \mathbf{r}, \mathbf{r}}, \mathbf{r}_{\mathbf{r}}, \mathbf{r}_{\mathbf{r}}, \mathbf{r}, \mathbf{r},$

6.2 $\mathbf{r} \neq \mathbf{r}$. I as $\mathbf{A} \neq \mathbf{r} \neq \mathbf{r}$. $\mathbf{r} \neq \mathbf{r} \neq \mathbf{r}$

 $\mathbf{r}^{\mathbf{d}} = \mathbf{r}^{\mathbf{d}} \mathbf{$

 $[\]frac{{}^{31}G_{1}}{G_{1}} = \frac{1}{12} + \frac{1}{1$

	Cr.		N r	1 -	Сŗ,		N r	17
					M (<i>N</i>			
(000,000)	46.4	1.95	105.4	2.49	51.8	2.56	37.6	0.91
A (000,000)	1.9	3.51	2.6	1.82	-0.1	-0.12	2.4	1.32
Ar A Ar Ar ar								
А	0.8	0.23	3.1	0.69	-10.4	-1.94	-3.1	-0.66
E t I								
L , L	88.0	2.04	8.7	0.12	130.6	2.36	-146.8	-2.52
Ar / r Ar	313.3	2.92	-376.4	-2.41	6.4	0.05	-222.0	-1.77
M/rr,	-108.7	-2.74	-175.7	-2.72	-2.0	-0.02	15.4	0.15
	-1.5	-0.03	-19.1	-0.18	-74.9	-0.56	7.2	0.06
Trd,	83.5	2.14	-46.0	-0.74	125.0	2.10	119.5	1.62
Tele III	-2.4	-0.14	22.1	0.89	28.8	1.09	13.1	0.56
1								
	7.9					1.54	-8.2	-0.08
G I	-310.5	-1.69	559.9	2.35	-86.5	-0.53	-43.6	-0.28
r, 1,	-41.4	-0.58	-204.2	-1.94	50.3	0.53	1.2	0.01
$C_{\mathbf{r}} \sim c_{\mathbf{r}} $	L, .,							
M/rr,	21.6				55.1	0.84		
		-0.19			-213.8	-4.97		
· Ar it A as		-0.43				-0.57		
1 1	79.9	1.80			179.3	1.86		
No-crission and a second								
11	77.9				49.5	2.85	33.9	2.18
11	52.0	1.71	164.3	3.84	-23.5	-0.65	-53.7	-0.97
I AT A MARK		0.19	2.2	0.10	29.8	1.13	70.7	3.09
	42.1			1.69		1.81	52.6	1.29
	-59.4	-0.24	291.0	0.87	1,079.2	2.54	166.5	0.44

 $\frac{1}{r} \int d_{r} = 20 \int d_{r} \int d_{r} = 1 \int d_{r} \int d$

Error Mr. Arror Mirer W. Conder Marrow Marrow Marrow $\mathcal{A}_{\mathbf{r}}, \mathcal{A}_{\mathbf{r}}, \mathcal{A$ V O ST LWELL LE LE LA LE SOU SOUS OF LA SUCCESSION FOR SOL I have the second of the secon $\mathbf{f}_{\mathbf{r}} = \mathbf{f}_{\mathbf{r}} + \mathbf{f}_{\mathbf{r}} +$ $\begin{bmatrix} \mathbf{A}_{\mathbf{\Gamma}\mathbf{\Gamma}} & \cdot \cdot \cdot \mathbf{M} & \mathbf{A}_{\mathbf{\Gamma}} & | \cdot_{\mathbf{\Gamma}} & \cdot \cdot \mathbf{M} \\ \cdot \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} & | \cdot_{\mathbf{\Gamma}} & \mathbf{M} & \cdot \mathbf{A}_{\mathbf{\Gamma}} & | \cdot_{\mathbf{\Gamma}} & \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} & | \cdot_{\mathbf{\Gamma}} & \mathbf{A}_{\mathbf{\Gamma}} & \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} & | \cdot_{\mathbf{\Gamma}} & \mathbf{A}_{\mathbf{\Gamma}} & \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} & | \cdot_{\mathbf{\Gamma}} & \mathbf{A}_{\mathbf{\Gamma}} & \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} & | \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} & \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} & \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} & \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} & \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} & \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} & \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} & \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} & \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} & \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} & \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} & \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\ \cdot \cdot \mathbf{A}_{\mathbf{\Gamma}} \\$

 $\mathbf{r} = \mathbf{r} + \mathbf{r} +$

7 Conclusions

 $\begin{array}{c} \mathbf{I} \quad (\mathbf{i} \quad \mathbf{i} \quad \mathbf{f} \quad \mathbf{f} \quad (\mathbf{i} \quad \mathbf{f} \quad$

 $[\]frac{1}{2} L \mathcal{A}_{\mathbf{M}}, \dots, \dots, \mathcal{A}_{\mathbf{M}} \mathcal{A}_{\mathbf{M}}, \mathcal$

 $\begin{array}{c} \mathbf{f}_{\mathbf{r}} \left(\mathbf{r}_{\mathbf{r}} \right) \left(\mathbf{r}_{\mathbf$

Appendix 1

	Den internet
$ \begin{array}{c} D \\ C \\ r \\ r' \\ r' \\ r' \\ r' \\ r' \\ r' \\$	$E = \mathbf{A}_{\mathbf{r}} = \mathbf{A}_{\mathbf{r}$
$\mathbf{M}_{\mathbf{r}} = \mathbf{I}_{\mathbf{r}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Г Г Г	il production of the second se
A .	$ \begin{pmatrix} \cdot $
А	$\mathbf{A} = \mathbf{A}_{\mathbf{r}} \mathbf{A}_{\mathbf{r}} \mathbf{A}_{\mathbf{r}} = \mathbf{P}_{\mathbf{r}}$
M/III /	$\mathbf{D}_{\mathbf{T}} = \mathbf{A}_{\mathbf{T}} \mathbf{A}_{\mathbf{T}} = \mathbf{M}_{\mathbf{T}} \mathbf{A}_{\mathbf{T}} $
D, I ., .	Ending the constraint of the set of the set $\mathcal{F}_{\mathbf{r}}$ is a set of the se
Ert 🖌 🚓 🖉	$\mathbf{D}^{(1)} = (\mathbf{A}_{\mathbf{I}}^{(1)}, \mathbf{A}_{\mathbf{I}}^{(2)}) = (\mathbf{A}_{\mathbf{I}}^{(2)}, $
(, ,)	$E_{\mathbf{r}} = \mathcal{A} [\mathbf{r}_{\mathbf{r}} + \mathbf{r}_{\mathbf{r}}] \mathcal{A}_{\mathbf{r}} = \mathbf{I}_{\mathbf{r}} [\mathbf{r}_{\mathbf{r}} + \mathbf{r}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}} = \mathbf{I}_{\mathbf{r}} [\mathbf{r}_{\mathbf{r}} + \mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}} = \mathbf{I}_{\mathbf{r}} [\mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}} = \mathbf{I}_{\mathbf{r}} [\mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}} = \mathbf{I}_{\mathbf{r}} [\mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}} = \mathbf{I}_{\mathbf{r}} [\mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}} = \mathbf{I}_{\mathbf{r}} [\mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}} = \mathbf{I}_{\mathbf{r}} [\mathbf{I}_{\mathbf{r}}] \mathbf{I}_{\mathbf{r}$
Tra ,	$\mathbf{E} \left[\mathbf{A}_{\mathbf{r}} - \mathbf{A}_{\mathbf{r}} \right] = \mathbf{A}_{\mathbf{r}} \left[\mathbf{A}_{\mathbf{r}} + \mathbf{A}_{\mathbf{r}} \right] = \mathbf{A}_{\mathbf{r}} \left[\mathbf{A}_{\mathbf{r}} $

Table 6 4 rd ...

	Dr. Cale .
r	$D = \begin{pmatrix} \mathbf{I}_{\mathbf{r}} \mathbf{I}_{\mathbf{r}$
T, iz (T, i)	▖▖▖▔▏▖▁▛▙▁▖ۥڛᠽ▁▖▖▖▖▖▓▖▁▖▖ڴ▁▓▙▁▁▖▖▖▅▁▕▖▖▕▛▃▁▕▗▖ ۦڴ▁▖▖
A r i i r	A r ar ar ar a francisma a r ar a a a a a a a a a a a a a a a
$C_{\mathbf{r},\mathbf{r},\mathbf{r}} = \mathbf{r} - \mathbf{r} \mathbf{r} \mathbf{r} + \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$	
M/ _{III} ,	$N \rightarrow \gamma r \rightarrow $
N , 4 117' -	$N \cdot w_{\mathbf{r}} \cdot w_{\mathbf{r}} \cdot w_{\mathbf{r}} \cdot w_{\mathbf{r}} \cdot \mathbf{r} \cdot \mathbf$
E.: / / /	$\mathbf{N} = \mathbf{N} \cdot \mathbf{r} + \mathbf{n} \cdot \mathbf{n} \cdot \mathbf{r} + \mathbf{n} \cdot \mathbf{n} \cdot \mathbf{r} + \mathbf{n} \cdot \mathbf{n} \cdot \mathbf{n} \cdot \mathbf{r} + \mathbf{n} \cdot \mathbf{n} \cdot \mathbf{n} \cdot \mathbf{n} \cdot \mathbf{n} + \mathbf{n} \cdot \mathbf{n} + \mathbf{n} \cdot $

Table 6 (,,,,,,,,,,,)

Table 7 MA. $A_{\Gamma} = A_{\Gamma} A_$

			Μ	
	N = - r + - + - + - + - + - + - + - + - + -	C _r ,, (<i>N</i> =418)		C r (<i>N</i> =407)
A _T , A _t , / A _t ,				
(00,000)	1.270	1.650	1.412	2.757
A (000,000)	3.838	5.255	3.723	7.866
Ar Ar Ar				
$\dot{A} (\mathbf{I}_{\Gamma})$	67.3	65.1	66.9	66.0
THAT IT A	0.23	0.26	0.55	0.55
	0.05	0.04	0.07	0.12
M/rr,	0.42	0.46	0.91	0.91
	0.09	0.10	0.05	0.05
rd,	0.66	0.54	0.74	0.58
I hat had a will	4			
	0.42	0.31	0.65	0.53
G	0.01	0.01	0.06	0.10
T. 1.	0.10	0.08	0.19	0.23
N . L .	0.47	0.60	0.10	0.14
N r ···· ····························	Ard tria			
M/m,	3.3	2.7	3.3	2.8
N , I Int	0.4	0.3	0.6	0.4
	2.5	1.7	2.5	1.7
	0.9	1.1	1.1	1.2
Tod T at a second	0.3	0.2	0.3	0.2
Ta ≇ ⊥o _T alla.	0.9	0.7	1.0	0.7

	M		

	C _I ,		N		Сŗ,		N r	
	(N=418)		(N=302)		M (<i>N</i>	=407)	M (<i>N</i> =	302)
N . / ff' /	79.218	2.51	102.731	2.10	79.903	2.50	-43.883	-1.22
I I I and	3.626	0.22	4.522	0.17	26.080	1.21	77.383	3.53
rofr of the	21.109	0.58	22.629	0.50	37.295	0.95	41.694	1.06
C A	-9.780	-0.04	-408.573	-1.10	19.110	0.05	213.975	0.58

Table 8 (, , , , ; ,)

4

 $\begin{array}{c} \mathbf{A} \\ \mathbf{A} \\ \mathbf{C} \\ \mathbf{r} \\ \mathbf{r} \\ \mathbf{N} \\ \mathbf{r} \\ \mathbf{r} \\ \mathbf{N} \\ \mathbf{r} \\ \mathbf{$

Table 9 D (\mathbf{r}^{\dagger}) $(\mathbf{A}_{\mathbf{r}}, \mathbf{f}_{\mathbf{r}}, \mathbf{f}_$

	Сŗ,		N r	12	Сŗ,		N r	1.
					M (N=	407)	M (N=	302)
	(<i>N</i> =418)	(<i>N</i> =302)					
(000 ·) <u>1 · · · · ·</u>	-0.001	-0.80	-0.007	-3.37	0.001	0.47	0.003	0.78
(000,000)	2.403	2.04	-0.606	-0.36	-0.300	-0.33	0.087	0.05
A (000,000)	0.004	0.10	-0.023	-0.45	0.039	1.02	-0.039	-0.68
4Γ 4Γ 4Γ 6Γ 6 Α Ε Γ 4 6Γ	-0.690	-3.89	-0.462	-2.61	-1.317	-5.84	-1.601	-6.85
	0.736	0.37	1.612	0.62	-4.771	-1 75	-4.926	-1.75
			-15.148		-8.083		-11.162	-1.88
Mírr,		2.11	-0.440		4.617	1.03	8.078	1.62
	-7.934				-19.682	-3.12		-1.02
r 4 ,	-0.012		5.285	2.10	5.066	1.83		-0.29
j <u>∦</u> .,,	18.068	9.29	13.545	5.63	13.342	3.48	18.713	3.75
G r	3.624	0.48	16.414	1.56	-6.761	-1.19	-3.610	-0.47
T, 1,	13.131	4.57	19.355	5.24	10.849	2.59	12.535	2.27
	Ar4 . r.	•						
Mirr,	0.487				-1.086	-0.43		
N . Am	0.443	0.31			0.138	0.09		
Ar An		-1.70			-0.503	-0.29		
rofr I do	-0.932				-6.437	-2.04		
	32.969	2.74	31.115	2.51	92.827	5.28	119.268	6.71

A all a set A de .

 $\begin{array}{c} \mathbf{f} \\ \mathbf$

N . r . A . A . r

Appendix 2 Joint maximum likelihood estimation of the coresidency, transfers and labour supply equations

The state of the s $\mathbf{E} = \mathbf{E} \cdot \mathbf{E} \cdot$ Al s. As The structure and successful as a structure of the section of the $C_i = 1(\eta_0 + \eta_1 Z_i^P + \eta_2 Z_i^C + \eta_3 H_i + \nu_i > 0)$ (7) $= 1(nZ_i + \nu_i > 0)$ $\begin{array}{c} \mathbf{r} & \mathbf{1} \\ \mathbf{r} \\ \mathbf{r} \\ \end{array}$ Ет**г**, 4 : $TR_i = \max(\pi_{0n} + \pi_{1n}Z_i^P + \pi_{2n}Z_i^{NC} + u_{1i}, 0)$ (8) $= \max(\pi X_i + u_{1i}, 0)$ $= \sum_{\mathbf{r}} [1, Z_i^P, Z_i^{NC}] \cdot \mathbf{F} (\mathbf{A}_i) \cdot \mathbf{A}_{i} = \sum_{\mathbf{r}} [1, Z_i^P, Z_i^{NC}] \cdot \mathbf{F} (\mathbf{A}_i) \cdot \mathbf{A}_{i} = \sum_{\mathbf{r}} [1, Z_i^P, Z_i^{NC}] \cdot \mathbf{F} (\mathbf{A}_i) \cdot \mathbf{A}_{i} = \sum_{\mathbf{r}} [1, Z_i^P, Z_i^{NC}] \cdot \mathbf{F} (\mathbf{A}_i) \cdot \mathbf{A}_{i} = \sum_{\mathbf{r}} [1, Z_i^P, Z_i^{NC}] \cdot \mathbf{F} (\mathbf{A}_i) \cdot \mathbf{A}_{i} = \sum_{\mathbf{r}} [1, Z_i^P, Z_i^{NC}] \cdot \mathbf{F} (\mathbf{A}_i) \cdot \mathbf{A}_{i} = \sum_{\mathbf{r}} [1, Z_i^P, Z_i^{NC}] \cdot \mathbf{F} (\mathbf{A}_i) \cdot \mathbf{A}_{i} = \sum_{\mathbf{r}} [1, Z_i^P, Z_i^{NC}] \cdot \mathbf{F} (\mathbf{A}_i) \cdot \mathbf{A}_{i} = \sum_{\mathbf{r}} [1, Z_i^P, Z_i^{NC}] \cdot \mathbf{F} (\mathbf{A}_i) \cdot \mathbf{A}_{i} = \sum_{\mathbf{r}} [1, Z_i^P, Z_i^{NC}] \cdot \mathbf{F} (\mathbf{A}_i) \cdot \mathbf{A}_{i} = \sum_{\mathbf{r}} [1, Z_i^P, Z_i^{NC}] \cdot \mathbf{F} (\mathbf{A}_i) \cdot \mathbf{A}_{i} = \sum_{\mathbf{r}} [1, Z_i^P, Z_i^{NC}] \cdot \mathbf{F} (\mathbf{A}_i) \cdot \mathbf{A}_{i} = \sum_{\mathbf{r}} [1, Z_i^P, Z_i^{NC}] \cdot \mathbf{F} (\mathbf{A}_i) \cdot \mathbf{A}_{i} = \sum_{\mathbf{r}} [1, Z_i^P, Z_i^{NC}] \cdot \mathbf{F} (\mathbf{A}_i) \cdot \mathbf{A}_{i} = \sum_{\mathbf{r}} [1, Z_i^P, Z_i^{NC}] \cdot \mathbf{A}_{i} = \sum_{\mathbf{r}} [1,$ $LS_{i}^{P} = \max\left(\beta_{0n} + \beta_{1n}Z_{i}^{P} + \gamma_{1n}TR_{i} + \varepsilon_{1i}, 0\right)$ (9) $= \max \left(\beta W_i + \gamma T R_i + \varepsilon_{1i}, 0 \right)$ \mathbf{r} i) \mathbf{r} $[1, Z_i^P]$. A THE ALL THE THE AT LINE STAN ANTICE THE AL $(\nu_i) (01 \rho_{\nu u_1} \sigma_{u_1} \rho_{\nu \varepsilon_1} \sigma_{\varepsilon_1})$

$$\begin{pmatrix} 1 \\ u_{1i} \\ \varepsilon_{1i} \end{pmatrix} \sim N \begin{pmatrix} 0 & \rho_{u_1\varepsilon_1} \sigma_{u_1} \sigma_{\varepsilon_1} \\ 0, & \sigma_{\varepsilon_1}^2 \end{pmatrix}$$

a prover the second of the sec

2.1.1 Coresiding $(C_i=1)$

$$\begin{array}{c} \mathbf{r} \quad \mathbf{P} \quad \mathbf$$

2.1.2 Non-coresiding, receiving positive transfers and having positive labour supply

$$\left(C_i=0, TR_i>0, LS_i^P>0\right)$$

$$L_{2i} = \Pr(C_i = 0, TR_i = tr_i, LS_i^P = ls_i)$$

= $\Pr(TR_i = tr_i, LS_i^P = ls_i) \times \Pr(C_i = 0 | TR_i = tr_i, LS_i^P = ls_i)$
= $\Pr(u_{1i} = tr_i - \pi x_i, \varepsilon_{1i} = ls_i - \beta w_i - \gamma tr_i)$
 $\times \Pr(\nu_i < -\eta z_i | u_{1i} = tr_i - \pi x_i, \varepsilon_{1i} = ls_i - \beta w_i - \gamma tr_i)$
= $\varphi_2(tr_i - \pi x_i, ls_i - \beta w_i - \gamma tr_i) \times \Phi(-\eta z_i | tr_i - \pi x_i, ls_i - \beta w_i - \gamma tr_i)$

2.1.3 Non-coresiding, receiving positive transfers and not working

$$(C_i = 0, TR_i > 0, LS_i^P = 0)$$

$$L_{3i} = \Pr \left(C_i = 0, LS_i^P = 0, TR_i = tr_i \right)$$

= $\Pr \left(TR_i = tr_i \right) \times \Pr \left(LS_i^P = 0, C_i = 0 | TR_i = tr_i \right)$
= $\Pr \left(u_{1i} = tr_i - \pi x_i \right) \times \Pr \left(\nu_i < -\eta z_i, \varepsilon_{1i} < -\beta w_i - \gamma tr | u_{1i} = tr_i - \pi x_i \right)$
= $\phi_2(tr_i - \pi x_i) \times \Phi_2(-\eta z_i, -\beta w_i - \gamma tr_i | tr_i - \pi x_i)$

 $= \left[\begin{array}{c} \phi_1 & \phi_2 \\ \phi_1 & \phi_1 \end{array} \right] \left[\begin{array}{c} \mathbf{A}_1 & \mathbf{P}_1 \end{array} \right] \left[\begin{array}{c} \mathbf{A}_1 & \mathbf{P}_1 \end{array} \right] \left[\begin{array}{c} \mathbf{A}_1 & \mathbf{P}_2 \end{array} \right] \left[\begin{array}{c} \mathbf{A}_1 & \mathbf{A}_1 \end{array} \right] \left[\begin{array}{c} \mathbf{A}_1 \end{array} \right] \left[\begin{array}{c} \mathbf{A}_1 & \mathbf{A}_1 \end{array} \right] \left[\begin{array}{c} \mathbf{A}_1 & \mathbf{A}_1 \end{array} \right] \left[\begin{array}{c} \mathbf{A}_1 \end{array} \right] \left[\begin{array}[\mathbf{A}_1 \end{array} \right] \left[\begin{array}[$

2.1.4 Non-coresiding, receiving no transfers and working

$$\left(C_i=0, \ TR_i=0, LS_i^P>0\right)$$

$$L_{4i} = \Pr \left(C_i = 0, TR_i = 0, LS_i^P = ls_i \right)$$

= $\Pr \left(LS_i^P = ls_i \right)$. $\Pr \left(TR_i = 0, C_i = 0 | LS_i^P = ls_i \right)$
= $\Pr \left(u_i = ls_i - \beta w_i - \gamma tr_i \right) \times \Pr \left(u_{1i} < -\pi x_i, \nu_i < -\eta z_i, |\varepsilon_{1i} = ls_i - \beta w_i - \gamma tr_i \right)$
= $\phi(ls_i - \beta w_i - \gamma tr_i) \times \Phi_B(-\pi x_i, -\eta z_i | ls_i - \beta w_i - \gamma tr_i)$

2.1.5 Non-coresiding, receiving no transfers and not working

$$\left(C_i=0,\ LS_i^P=0,\ TR_i=0\right)$$

$$L_{5i} = \Pr \left(C_i = 0, LS_i^P = 0, TR_i = 0 \right)$$

= $\Pr \left(\nu_i < -\eta z_i, \varepsilon_{1i} < -\beta w_i - \gamma tr_i, u_{1i} < -\pi x_i \right)$
= $\Phi_3(-\eta z_i, -\beta w_i - \gamma tr_i, -\pi x_i),$

$$r = r = \Phi_{3}$$
, $r = r = A_r = A_r$ if is an is reading the second

$$log L_i = 1(C_i = 1) \times log L_{1i} + 1(C_i = 0, TR_i > LS_i > 0) \times log L_{2i} + 1(C_i = 0, TR_i > 0, LS_i = 0) \times log L_{3i} + 1(C_i = 0, TR_i = 0, LS_i > 0) \times log L_{4i} + 1(C_i = 0, TR_i = 0, LS_i = 0) \times log L_{5i}.$$

(1) = (1)

References

A \mathcal{A} \mathcal{A}) / T) $\begin{array}{c} \mathbf{D}_{\mathbf{f}}^{\mathbf{f}}, \mathbf{f}, \mathbf{K} = \mathbf{f}_{\mathbf{f}}^{\mathbf{f}}, \mathbf{f}^{\mathbf{f}}, \mathbf{f}_{\mathbf{f}}^$ 1076 $(M_1, M_1(1991)) = A_{10} \oplus B_{10} \oplus B_{10} \oplus B_{10} \oplus A_{10} \oplus$ C AJ, J G (1989) A A EAN: T. A. A.A. IN , MAT (2):305-314 $F_{\mathbf{f}}$ $\mathbf{F}_{\mathbf{A}} = \mathbf{F}_{\mathbf{A}} =$ $\begin{array}{c} \mathbf{A} \neq \mathbf{$ $\begin{array}{c} H_{\Gamma} \mid \mathcal{A}_{\mu}, \quad A \mid \mathcal{A} \mid \mathcal{A}$ $\begin{array}{c} H & \mathbf{r} & \mathbf{r} \\ H & \mathbf{r} & \mathbf{r} \\ \mathbf{f}_{\mathbf{r}} & \mathbf{f}_{\mathbf{r}} \\ \mathbf$ JE 108(2):413–435 $\begin{array}{c} H_{1,2} = G\left(2000\right) L_{1,2} = H_{1,2} =$ $\mathbf{I}_{\mathcal{A}_{\mathbf{A}}} = \mathbf{A} \cdot \mathbf{I} \cdot \mathbf{K} + \mathbf{A}_{\mathbf{A}} \cdot \mathbf{A}_{\mathbf{A}} + \mathbf{A}_{\mathbf{A}} +$.D., , , D /₁, , , E , , , MI , Q , , K $A_{\mathbf{r}} A (1999) E A_{\mathbf{r}} A (1997) E A_$ - 1 - A 11- A 11- 1 - 1-

- $K = \mathbf{A}_{\mathbf{r}} \mathbf{A} (2000) \mathbf{A}_{\mathbf{r}} = \mathbf{A}_{\mathbf{r}} = \mathbf{P}_{\mathbf{r}} \mathbf{P}_{\mathbf{$
- $J, I_{\Gamma}, ..., M$ (1994) ..., $I = I_{200}$..., L
- $L_{10} \mathcal{A}_{r} \sim L, \quad (1997) M = \mathcal{P}_{r} + r = r \mathcal{A}_{r} \sim \mathcal{A}_{r} = \mathcal{P}_{r} + r = \mathcal{P}_{r} + \mathcal{M} \mathcal{A} = \mathcal{A}_{r}$ D ____ 34(1):115-134
- $\begin{array}{c} L & \textbf{A} \\ \textbf{A}_{r} & \textbf{I} \end{array} (1985) \mathbf{M}_{a} & \textbf{A}_{a} \\ \textbf{M}_{r} & \textbf{L} \end{array} (1985) \mathbf{L}_{a} & \textbf{A}_{r} \\ \textbf{M}_{r} & \textbf{L} \end{array} (1989) \mathbf{L}_{a} & \textbf{A}_{r} \\ \textbf{M}_{r} & \textbf{L} \end{array} (1989) \mathbf{L}_{a} & \textbf{A}_{r} \\ \textbf{M}_{r} & \textbf{L} \end{array} (1989) \mathbf{L}_{a} & \textbf{A}_{r} \\ \textbf{M}_{r} & \textbf{M}_{r} \\ \textbf{M}_{r} & \textbf{L} \end{array} (1989) \mathbf{L}_{a} \\ \textbf{M}_{r} & \textbf{M}_{r} \\ \textbf{M}_{r$ D _ _ _ 26:627–644

- N $\not \not \in A$ (1995) A^{-1} , $A \rightarrow \phi$, ϕ μ is $I \rightarrow \phi$, A^{-1} , ϕ $h \rightarrow \phi$, $B \rightarrow \pi$, M, $I \rightarrow \phi$ 1 151(3):422-437

- $\begin{array}{c} \mathbf{x}_{1} \quad \mathbf{x}_{2} \quad \mathbf{x}_{3} \quad \mathbf{x}_{4} \quad \mathbf{x}_{5} \quad \mathbf{x}$ $\int \mathcal{G}(1997) \mathbf{r} \cdot \mathbf{A}_{\mathbf{r}} = \int \mathcal{A}_{\mathbf{r}} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{A}_{\mathbf{r}} \cdot \mathbf{A}_{$
- (4):487-511
- $\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \left[\left(1995 \right) \right] \right] = \mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \left[\left(\mathbb{E}_{\mathbf{r}} \right) \right] \left[\mathbb{E}_{\mathbf{r}} \left[\left(\mathbb{E}_{\mathbf{r}} \right) \right] \right] \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \right] \right] \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \right] \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \right] \right] \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \right] \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \right] \right] \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \right] \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \right] \right] \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \right] \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \right] \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \right] \right] \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \right] \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{E}_{\mathbf{r}} \right] \right] \left[\mathbb{E}_{\mathbf{r}} \left[\mathbb{$ r, N, r